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Using a finite element method to the time-dependent two-band Ginzburg–Landau model we numerically
explored the possible distribution of magnetic vortices of two-band mesoscopic superconductors in
different regions of the parameters. The parameter space is defined by microscopic quantities such as
partial density of states, the Fermi velocity ratio and elements of the coupling matrix. In particular,
when the interband coupling and the Fermi velocity ratio are fixed, the critical temperatures of band
activity (Tc1 and Tc2) are modulated by changing the partial densities of states, n1 and n2. Due to
simulation results, we obtained possible distribution of magnetic vortices including fractional vortices
and composite vortices.
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1. Introduction

Vortex matters in multiband superconductors
were intensively studied, especially since their dis-
covery in MgB2 and the new iron-based supercon-
ductors [1–7]. Multiband superconductors present
a variety of intriguing properties that are not found
in single-band superconductors, such as the time-
reversal symmetry-broken phase [8], short-range
repulsion and long-range attraction between vor-
tices [9], oscillations of superconducting phase dif-
ference between different bands [10] and fractional
vortices [11–15], etc. The appearance of fractional
vortices is possible in mesoscopically confined sam-
ples, where condensates associated with different
bandgaps can have different phase winding num-
bers due to their coexisting weakly interaction and
significantly different coherence length [11].

Multiple condensates simultaneously couple to
a common gauge field, and a vortex associated with
a 2π-phase rotation in one condensate only carries
a fractional quantum flux [12]. When interband
phase differences are locked to each other due to
strong couplings, a phase rotation along a closed
path is the same for different condensates. Thus,

vortices in different bands overlap in space and
form the composite vortex with the standard inte-
ger quantum flux [11, 12]. Therefore, the composite
vortex can be viewed as a bound state of fractional
vortices in different bands with the vortex cores lo-
cated at the same position. In addition, the com-
posite vortex can be decoupled by the driving cur-
rent [13] or thermal fluctuations [15] resulting in the
fractional vortices.

The fractional states are typically found in lim-
ited ranges of applied field, and will have higher
energy than the conventional vortex states due to
the very weak coupling between the band and the
condensates.

In this paper, our interest is to explore possible
distribution of fractional vortices of two-band meso-
scopic superconductors in different regions of the
parameter space by using the time-dependent two-
band Ginzburg–Landau (TDTBGL) model, where
we have cautiously set the temperature T close
to the critical temperature Tc in order to ensure
the qualitative and quantitative validity of our
results [14, 16]. It is evidenced that standard
multiband Ginzburg–Landau model provides quite
an accurate quantitative description of the specific

673

http://doi.org/10.12693/APhysPolA.139.673
mailto:plpeng@shiep.edu.cn


Qilin Song et al.

features of two-band superconductivity [17, 18].
By using the finite-element method (FEM) [19–22],
the TDTBGL equations are numerically solved to
obtain the vortex properties of mesoscopic two-band
superconductors, including fractional vortices and
composite vortices.

The paper is organized as follows. In Sect. 2,
we show the derived TDTBGL equations and ex-
plain the numerical method and procedure used in
our calculations. In Sect. 3, we analyze the results
obtained for the two-band superconductors. Our
results are finally summarized in Sect. 4.

2. Time-dependent two-band
Ginzburg–Landau theory

We consider a mesoscopic two-band supercon-
ducting square of thickness d much smaller than
the penetration depth λ and the two characteristic
lengths of density variations in both condensates, in
such a way that the superconducting square is effec-
tively two-dimensional, in the (x, y) plane. The ψ1

and ψ2 show the wave functions of the first band
condensate and the second band condensate, re-
spectively. The H = (0, 0, H) is the applied mag-
netic field, and B = ∇×A is the local field. If the
superconductor is driven out of equilibrium, the or-
der parameter should relax back to its equilibrium
value. The dimensionless TDTBGL equations in
the zero-electrostatic potential gauge can be writ-
ten as follows [14]:
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(
T
Tcj

)
= τ − Sj

njη
and

Sj = λjj − njηS, for j = 1, 2. Furthermore,
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The relaxation time of order parameters is denoted
by Γ1,2, σn is the conductivity of the sample in
a two-band case, and η = det(Λ)/(n1n2). The
electron–phonon coupling matrix is expressed as

Λ =

(
n1λ11 n2λ12
n1λ12 n2λ22

)
. (7)

From the above expressions, one can ob-
tain the intrinsic critical temperatures
Tcj = Tc exp(−Sj/(njη)). The strength of the
Josephson coupling is determined by γ = λ12/(n1η).
The intrinsic TDTBGL parameters of each band
are denoted as

κ1 =
3cW

hev21

√
π

2n1N(0)
,

κ2 = κ1α

√
n1
n2
. (8)

The critical temperature is given by the relation
1.76Tc = 2~ωD e−S , where ωD is the Debye fre-
quency [16]. Other relevant quantities are the
Fermi velocity of the first band v1, the square
of the ratio of the Fermi velocities in the two
bands α = (v1/v2)

2, the elements of the coupling
matrix λ11, λ22 and λ12 = λ21, the total density of
states N (0), the partial density of states of the
first band n1 (thus n2 = 1 − n1), and Tc, which
sets the energy scale W 2 = (4πTc)

2/(17ζ(3)).
Let us take the normalization for the order pa-
rameters as W , the normalization for the vector
potential as A0 = hc/(4eπζ1), for the lengths as
ζ1 = ~v1/(

√
6W ), the normalization for the temper-

atures as Tc, and for the time by t0 = 4πσk21ζ
2
1/c

2

(where σ is the normal-state conductivity). The
magnetic field is given in the units of the thermo-
dynamic critical field Hc. For the magnetic field,
the boundary condition reads as follows:

(∇×A)|boundary = H. (9)
For the order parameter, the superconductor–
insulator boundary conditions are used

(− i∇ψ1 −Aψ1) · e1 = 0, (10)

(− i∇ψ2 −Aψ2) · e2 = 0, (11)
where e1 and e2 are the outward normal units to
the surface. First, we have solved (1)–(4) at zero
value of the applied field. Then, the field was adia-
batically increased, in small steps ∆H = 0.005Hc.
The dimensionless magnetization, which is a direct
measure of the magnetic field expelled from the
system, is defined as M = 1

4π (〈B〉 −H), where
〈B〉 denotes the magnetic induction averaged over
the mesoscopic superconducting square area S.

In order to perform simulations of an evolution
of a stable initial state, we need to set the initial
condition for ψ1 and ψ2. In our study, we chose
that

ψ1 =
√
n1τ1 + i

√
n2τ1,

ψ2 =
√
n1τ2 + i

√
n2τ2. (12)
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3. Results and discussion

We consider the mesoscopic superconducting
square with sizes of Lx × Ly = 30ζ1 × 30ζ1. Here,
we adopt a different strategy and study the possible
configurations of vortex states in different regions
of the parameter space defined by the microscopic
quantities. For a treatable analysis, we first fix the
temperature of the systems at T = 0.9 to firmly re-
main in the validity regime of the TDTBGL theory,
and choose microscopic parameters such that both
Tc1 and Tc2 are also close to Tc. Such critical tem-
peratures are also chosen in order to minimize the
effects of hidden criticality in the case of weak cou-
pling between the two bands. For the other parame-
ters, we fixed λ11 = 2.415, λ22 = 1.211, λ12 = 0.001,
and Γ1 = Γ2 = 5.0, while N(0) is fixed by chosen
κ1 = 10 [14]. In our simulation, we change the par-
tial densities of states n1 and n2. The main ef-
fect of changing these two parameters is the rela-
tive variation of the critical temperatures of band
activity, i.e., Tc1 and Tc2. Hence, for Tc1 and for
Tc2 < T < Tc, the superconductivity in the sys-
tem survives only due to the two bands, whereas for
T < Tc1 and any Tc2, both bands are active. For
temperature such that TcB < T < TcA, one of the
bands (band A) is active while the other (band B)
is passive. The vortex configurations correspond-
ing to the first band and the second band having
a phase winding number L1 and L2, respectively,
are labeled as (L1, L2). For a given n1, the vortex
state was obtained after initializing the system with
a particular (L1, L2) configuration at a given value
of H. The vortex states with L1 6= L2, called frac-
tional states, can occur in the range of n1 and n2
values for which both bands are active.

Figures 1 and 2 show a detailed analysis of how
the magnetization curves and vortex states change
with magnetic field. The calculation were done for
n1 = 1 − n2 = 0.334, for which Tc1 = Tc2 = 1.0
and γ = 1.024 × 10−3. The M(H) magnetization
curves are shown in Fig. 1, when ν1/ν2 = 0.675

Fig. 1. Magnetization M(H) at T = 0.9 and n1 =
1 − n2 = 0.334 for the ratio of the Fermi velocities
ν1/ν2 = 0.675 and ν1/ν2 = 1.225, respectively.

Fig. 2. (a) Vortex configurations corresponding to
selected states for ν1/ν2 = 0.675 and n1 = 0.334.
(b) Vortex configurations corresponding to selected
states for ν1/ν2 = 1.225 and n1 = 0.334.

and ν1/ν2 = 1.225, respectively. Figure 1 presents
a series of steps corresponding to the entry of vor-
tices, and forming the vortex configurations which
are actually shown in Fig. 2a and b, respectively.
When ν1/ν2 = 0.675, we obtain κ1 > κ2 (κ1 = 10.0
and κ2 = 3.227). The vortex entry occurs at first
in the second band condensate at H = 0.425Hc

(see Fig. 2a). Fractional vortices were also found,
e.g., (0, 2) state at 0.425Hc ≤ H < 0.475Hc, and
(1, 2) state at 0.475Hc ≤ H < 0.500Hc. When
0.500Hc ≤ H < 1.325Hc, no fractional vortex state
exists. For the found vortexes, their structures
were composite vortex states. This concerns the
(2, 2) state at H = 0.500Hc and the (4, 4) state at
H = 0.650Hc (see Fig. 2a). When ν1/ν2 = 1.225,
we obtain κ1 < κ2 (κ1 = 10.0 and κ2 = 10.627).
We can also observe the (8, 12) fractional vortex
states at 1.525Hc ≤ H < 1.700Hc (see Fig. 2b).

Figures 3 and 4 show the magnetization curves
and vortex states change with magnetic field for
n1 = 1−n2 = 0.343, for which Tc1 > Tc2 (Tc1 = 1.0
and Tc2 = 0.95), and γ = 0.997× 10−3. Notice that
the relative magnetization decreases for n1 = 0.343
as compared to the case for n1 = 0.334. This
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Fig. 3. Magnetization M(H) at T = 0.9 and n1 =
1 − n2 = 0.343 for the ratio of the Fermi velocities
ν1/ν2 = 0.675 and ν1/ν2 = 1.225, respectively.

Fig. 4. (a) Vortex configurations corresponding to
selected states for ν1/ν2 = 0.675 and n1 = 0.343.
(b) Vortex configurations corresponding to selected
states for ν1/ν2 = 1.225 and n1 = 0.343.

may be attributed to the weakening of the strength
of the Josephson coupling (γ = 0.997 × 10−3

for n1 = 0.343 while for n1 = 0.334 one has
γ = 1.024× 10−3). When ν1/ν2 = 0.675 (κ1 = 10.0
and κ2 = 3.292), the vortex entry occurs at first in
the second band condensate at H = 0.475Hc. We
can only observe the (0, 4) fractional vortex state
at 0.475Hc ≤ H < 0.500Hc. When H ≥ 0.500Hc,
we found the (4, 4) composite vortex state only.
When ν1/ν2 = 1.225 (κ1 = 10 and κ2 = 10.843),
no fractional vortex state was found. For the found
vortexes, their structures were only the (2, 2), (4, 4),
(8, 8) and (12, 12) composite vortex states. The vor-
tex configurations corresponding to selected states
are shown in Fig. 4.

Fig. 5. Magnetization M(H) at T = 0.9 and n1 =
1 − n2 = 0.325 for the ratio of the Fermi velocities
ν1/ν2 = 0.675 and ν1/ν2 = 1.225, respectively.

Fig. 6. (a) Vortex configurations corresponding to
selected states for ν1/ν2 = 0.675 and n1 = 0.325.
(b) Vortex configurations corresponding to selected
states for ν1/ν2 = 1.225 and n1 = 0.325.

Figures 5 and 6 show the magnetization curves
and vortex states change with magnetic field for
n1 = 1 − n2 = 0.325, for which Tc1 < Tc2 (i.e.,
Tc1 = 0.95 and Tc2 = 1.0) and γ = 1.052 × 10−3.
Here we also observed the similar phenomenon for
the enhanced coupling effect (γ = 1.052 × 10−3),
as compared with n1 = 0.334 (γ = 1.024 × 10−3).
When ν1/ν2 = 0.675 (κ1 = 10.0 and κ2 = 3.162),
the vortex entry first occurs in the second band
condensate at H = 0.425 Hc. The only ob-
served fractional vortex state was the (0, 2) state
at 0.425 Hc ≤ H < 0.600 Hc. When H ≥ 0.600Hc,
no fractional vortex state was found. For the found
vortexes, their structures were the (4, 4) and (8, 8)
composite vortex states. When ν1/ν2 = 1.225
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Fig. 7. Magnetization M(H) for ν1/ν2 = 0.6 and
n1 = 1 − n2 = 0.355 at T = 0.85, T = 0.88, and
T = 0.9, respectively.

Fig. 8. Vortex configurations corresponding to se-
lected states at T = 0.85 for ν1/ν2 = 0.6.

(κ1 = 10 and κ2 = 10.413), the found vortex struc-
tures were only the (2, 2), (4, 4) and (8, 8) compos-
ite vortex states. The vortex configurations corre-
sponding to the selected states are shown in Fig. 6.

In what follows next, let us consider a meso-
scopic superconducting rectangle of the size
Lx × Ly = 100ζ1 × 20ζ1. For the simulation param-
eters, we take λ11 = 2.0, λ22 = 1.03, λ12 = 0.005,
n1 = 0.355, and Γ1 = Γ2 = 5.0, while N(0) is fixed
by the choice of κ1 = 10.0. Now, we have there-
fore Tc1 = 1.00, Tc2 = 0.90 and γ = 0.0068. We
obtain κ1 > κ2 (κ1 = 10.0 and κ2 = 2.67) when
ν1/ν2 = 0.6, while we obtain κ1 < κ2 (κ1 = 10.0
and κ2 = 10.683) when ν1/ν2 = 1.2.

Fig. 9. Magnetization M(H) for ν1/ν2 = 1.2 and
n1 = 1 − n2 = 0.355 at T = 0.85 and T = 0.9,
respectively.

Fig. 10. Vortex configurations corresponding to
selected states at T = 0.85 for ν1/ν2 = 1.2.

In Fig. 7, the M(H) magnetization curves in
units of the thermodynamic critical field Hc at
ν1/ν2 = 0.6 are shown for different values of tem-
perature T varied from 0.85 to 0.90 K. We can
observe the relative magnetization decreases with
increasing T . The vortex configurations corre-
sponding to selected states at T = 0.85 are shown
in Fig. 8. When ν1/ν2 = 0.60 and T = 0.85, the
vortex entry occurs at first in the second band
condensate at H = 0.4Hc. We can observe the
(0, 4), (0, 6) and (4, 8) fractional vortex states at
0.4Hc ≤ H < 0.8Hc. Importantly, the superconduc-
tivity of the second band is suppressed at a lower
magnetic field, while the first band still maintains
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superconductivity at the higher magnetic field.
When T = Tc2 = 0.9, the second band is very close
to the normal state. In fact, the superconduc-
tivity still survives in the first band due to the
T < Tc1 = 1.0. We can state therefore that the
magnetization properties in the system are similar
to those of a single band superconductor.

In comparison, the M(H) magnetization curves
at ν1/ν2 = 1.2 for different T values are shown
in Figs. 9 and 10. When ν1/ν2 = 1.2 and
T = 0.85, the vortex entry occurs at first in the
second band condensate at H = 0.575Hc. The
(0, 8) fractional vortex states can be observed
at 0.575Hc ≤ H < 0.6Hc. In turn, the (10, 12),
(12, 14) and (16, 18) fractional vortex states can be
observed at 0.775Hc 6 H < 1.325Hc.

4. Conclusions

Using the time-dependent two-band Ginzburg–
Landau model, we studied the distribution of frac-
tional vortex configurations in the mesoscopic su-
perconductors for different regions of the parame-
ter space. The obtained results revealed that the
fractional state could be stable in mesoscopic su-
perconductors with the proper microscopic param-
eters. The optimized parameter shapes and sizes
of the mesoscopic superconductors could maximize
the range of the applied magnetic field in which the
fractional states are stable. Our results could help
to understand and detect the vortex states in meso-
scopic multiband superconductors. In addition, it
is proved that FEM is a good tool for the study of
mesoscopic superconductors. Due to its flexibility
and high computing efficiency, it is expected to be
extended to the research of superconducting devices
with complex geometry.
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