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In this article, we investigate the problem of state reconstruction of four-level quantum systems.
A realistic scenario is considered with measurement results distorted by random unitary operators.
Two frames that define injective measurements are applied and compared. By introducing arbitrary
rotations, we can test the performance of the framework versus the amount of experimental noise. The
results of numerical simulations are depicted in graphs and discussed. In particular, a class of entangled
states is reconstructed. The concurrence is used as a figure of merit to quantify how well entanglement
is preserved through noisy measurements.
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1. Introduction

The problem of complex vector reconstruction
(phase retrieval) appears in many areas of re-
search [1, 2]. The goal is to uniquely determine an
unknown vector |x〉 ∈ Cd based on the absolute val-
ues of its inner product with a fixed set of vectors
Ξ = {|ξ1〉 , . . . , |ξn〉} that span Cd. The collection
of vectors denoted by Ξ is called a frame. Thus,
the accessible data, referred to as intensity mea-
surements, can be written in the form
|〈ξi|x〉|2 for i = 1, . . . , n. (1)

If phase retrieval is possible, we say that the frame
Ξ defines injective measurements. So far, sufficient
conditions have been formulated for the injectivity
of measurements. For example, it has been proved
that a generic frame with the number of elements
satisfying n ≥ 4(d − 1) is sufficient to reconstruct
an unknown complex vector |x〉 ∈ Cd [3, 4]. Neces-
sary conditions for phase retrieval, however, remain
obscure and the figure 4(d − 1) cannot be consid-
ered as a threshold for the minimal number of mea-
surements. In particular, it has been demonstrated
for |x〉 ∈ C4 that a frame consisting of 11 elements
defines injective measurements [5]. In the present
article, this specific frame is applied and tested in
an imperfect measurements scenario.

In quantum physics, the problem of phase re-
trieval appears if we want to reconstruct a com-
plex vector |ψ〉 ∈ H which represents a pure state
of a physical system. This question belongs to

a subfield called quantum state tomography (QST),
which aims at recovering accurate mathematical
representations of quantum states from measure-
ments [6, 7]. Some proposals, both theoretical and
experimental, focus on performing QST with the
minimal number of measurements [8, 9]. Usually,
the post-measurement state of the system is of lit-
tle interest since the probabilities of the respective
measurement outcomes are in the center of atten-
tion. In such cases, positive operator-valued mea-
sures (POVMs) can be applied to study the statis-
tics of measurements [10]. In particular, symmet-
ric informationally complete POVMs (SIC-POVMs)
can be considered optimal as far as the number of
measurements is concerned [11–13]. Special atten-
tion should be paid to the methods which utilize
dynamical maps in order to decrease the number
of necessary measurement operators [14, 15]. On
the other hand, in practical realizations of QST
protocols, there is a tendency to apply overcom-
plete sets of measurements in order to reduce the
detrimental impact of experimental noise [16, 17].
Particularly, mutually unbiased bases (MUBs) can
be employed as an overcomplete measurement
scheme [18, 19].

In this article, we consider only a finite-
dimensional Hilbert space H ∼= Cd, i.e., dimH =
d < ∞. More specifically, we investigate the
problem of QST of four-level systems described by
pure states. Reconstruction of pure states (or al-
most pure) usually involves separate tomographic
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techniques [20–22]. In our scheme, two generic
frames are applied in order to reconstruct a sam-
ple of four-dimensional complex vectors. One frame
comprises 20 vectors which belong to the MUBs for
the Hilbert space H such that dimH = 4. The other
one, introduced by Vinzant [5], consists of 11 ele-
ments. The connection between QST and the the-
ory of frames has already been studied in the con-
text of the stroboscopic approach to quantum state
identification [23, 24].

From a physical point of view, intensity measure-
ments of the form (1) correspond to an unnormal-
ized POVM since
|〈ξi|ψ〉|2 = Tr

(
|ψ〉 〈ψ|Mi

)
, (2)

where the measurement operator Mi is defined as
a rank-one projector, i.e., Mi := |ξi〉 〈ξi|. Assuming
that we can normalize the frame vectors, we obtain
measurement results which are equivalent to proba-
bilities given by the Born rule. Therefore, the kind
of measurement analyzed in the paper is in line with
the general description of quantum measurement.

This work is a follow-up of [25], where qubits were
reconstructed with two frames comprising distinct
numbers of elements. However, in the present ar-
ticle we study a different source of experimental
noise. We impose random rotations on the mea-
surement operators and investigate the efficiency
of the frames in quantum state reconstruction for
various degrees of experimental noise. Moreover,
since four-level systems are considered, we can ana-
lyze QST of entangled states, as a specific example.
The results indicate how well entanglement can be
retrieved from imperfect measurements.

In Sect. 2, we introduce the framework of QST
of four-level systems along with the figures of merit
which are used to quantify the efficiency of our to-
mographic scheme. Then, in Sect. 3, we present and
discuss the results of numerical simulations. The
figures of merit are depicted in graphs, which al-
lows one to observe how the efficiency of the QST
framework depends on the amount of experimental
noise. The framework can be successfully applied
to study QST of pure states with different frames.

2. State reconstruction
with noisy measurements

In this work, we assume that the initial state of
a four-level system can be presented as a complex
vector

|ψin〉 =



cos
(
θ
2

)
sin
(
β
2

)
sin
(
θ
2

)
sin
(
β
2

)
e iφ12

sin
(
δ
2

)
cos
(
β
2

)
e iφ13

cos
(
δ
2

)
cos
(
β
2

)
e iφ14


, (3)

where 0 ≤ φ12, φ13, φ14 < 2π and 0 ≤ θ, β, δ ≤ π.
The parametrization (3) represents a general four-
level pure state, where φ12, φ13, φ14 denote relative

phases between the respective basis states. An un-
known quantum state of the form (3) can be recon-
structed from injective measurements generated by
a generic frame: Ξ = {|ξ1〉 , . . . }, where |ξi〉 ∈ C4.
In the context of physical applications, we assume
that the frame vectors are normalized, which im-
plies that the intensity measurements |〈ξi|ψin〉|2 are
equivalent to probabilities in the projective mea-
surement.

To make the framework realistic, we assume
that the measurements are subject to experimen-
tal noise, which can be mathematically modeled
by random unitary transformations that distort the
original frame vectors, see [26]. The general form of
a 2× 2 unitary rotational operator is given by

U(ω1, ω2, ω3) =(
e iω1/2 cos (ω3) − i e iω2 sin (ω3)

− i e− iω2 sin (ω3) e− iω1/2 cos (ω3)

)
, (4)

where the parameters ω1, ω2, ω3, in our application,
are selected randomly from a normal distribution
characterized by the mean value equal to 0 and
a non-zero standard deviation denoted by σ, i.e.,
ω1, ω2, ω3 ∈ N (0, σ). This allows us to construct
a 4× 4 perturbation matrix P(σ) as
P(σ) := U(ω1, ω2, ω3)⊗ U(ω′1, ω

′
2, ω
′
3). (5)

Equipped with the definition (5), we can now in-
troduce a simulated result of the k-th intensity
measurement burdened with experimental noise.
Namely,

pMk =
∣∣〈ξk(σ)∣∣ψin〉

∣∣2 , (6)
where |ξk(σ)〉 = P(σ) |ξk〉. For each single mea-
surement, a different perturbation matrix P(σ) is
generated with random parameters according to (4)
and (5), which allows us to obtain noisy measure-
ment results with a given parameter σ. Thanks to
this approach, each act of observation is burdened
with random uncertainty and σ is used to quantify
the amount of experimental noise.

For a specific frame Ξ , we are able to numeri-
cally generate experimental data corresponding to
any input state of the form (3). However, when
we reconstruct an unknown state of a quantum sys-
tem, we assume that the experimenter does not pos-
sess any a priori knowledge about the state in ques-
tion. Thus, we utilize the Cholesky factorization,
see [27–29], which gives a general representation of
4× 4 density matrix

ρout(t1, . . . , t16) =
T †T

Tr
(
T †T

) , (7)

where

T =


t1 0 0 0

t5 + it6 t2 0 0

t11 + it12 t7 + it8 t3 0

t15 + it16 t13 + it14 t9 + it10 t4

 , (8)

which means that we need to estimate the values of
16 real parameters: t1, t2, . . . , t16 in order to obtain
the complete knowledge about an unknown state.
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Thanks to the Cholesky decomposition, any den-
sity matrix resulting from the framework is phys-
ical, i.e., it is Hermitian, positive semi-definite, of
trace one.

With ρout standing for the output density matrix,
we can write a formula, according to the Born rule,
for the expected result of k-th measurements

pEk = Tr
(
|ξk〉 〈ξk| ρout(t1, . . . , t16)

)
. (9)

In order to determine the values of the parame-
ters t1, . . . , t16 that fit optimally to the noisy mea-
surements, we shall apply the method of least
squares (LS) [30]. This technique, together with
the maximum likelihood estimation (MLE), is often
implemented in different tomographic frameworks,
see, e.g., [29, 31]. The LS method requires to search
for the minimum value of the following function:

fLSσ
(
t1, t2, . . . , t16

)
=
∑
k

(
pEk − pMk

)2
=

∑
k

[
Tr
(
|ξk〉 〈ξk| ρout(t1, . . . , t16)

)
−
∣∣ 〈ξk(σ)|ψin〉

∣∣2]2 (10)

which can be done numerically for any initial
state |ψin〉 and a specific frame Ξ .

In the present work, we compare the efficiency of
two frames in state tomography of four-level sys-
tems. The quality of state reconstruction is quanti-
fied by two figures of merit: quantum fidelity F(σ),
given by [10]:

F(σ) :=
(
Tr
√√

ρout |ψin〉 〈ψin|
√
ρout

)2

, (11)

and purity γ(σ), defined as:

γ(σ) := Tr
(
ρ2out

)
. (12)

In our framework, both figures of merit depend
on the amount of noise introduced into the measure-
ments. For two quantum states, the fidelity mea-
sures their closeness [32, 33], whereas the purity is
commonly used to evaluate how far the state has
drifted from the pure. Both quantities can be used
to compare the result of a QST framework with the
original. In addition, they can be applied to track
changes that occur to quantum state in time [34].

In our model, we perform QST with each frame
for a sample of 12096 input states defined as (3),
with the parameters φ12, φ13, φ14, θ, β, δ covering
the full range (discretely selected with a proper
step). Then, the performance of each frame can
be expressed by the average fidelity Fav(σ) and pu-
rity γav(σ) computed over the sample. A similar
approach to evaluate the performance of quantum
state estimation was utilized in [25, 29].

Apart from the general sample of 12096 four-level
input states, we shall consider a special subset of the
states given by

|Φin〉 =
1√
2

(
|00〉+ e iφ |11〉

)
, (13)

where |00〉 and |11〉 denote two vectors from the
standard basis in C4, whereas φ represents the rel-
ative phase between the states (0 ≤ φ < 2π).
For two specific values of the relative phase, i.e.,
φ = 0 or φ = π, one gets the elements of the Bell
basis, denoted by Φ+ and Φ−, respectively.

This particular state vector (13) describes one
type of two-qubit entanglement, which can be re-
alized on photons by exploiting different degrees
of freedom, especially: polarization, spectral, spa-
tial and temporal mode. Such states are com-
monly considered in quantum communication pro-
tocols [35, 36], because one can generate this kind
of entanglement by a variety of experimental tech-
niques, for example by spontaneous four-wave mix-
ing (SFWM) in a dispersion shifted fiber [37, 38],
or by spontaneous parametric down conversion
(SPDC) [39, 40], and by a source which utilizes
quantum dots [41, 42].

The problem of relative phase estimation for
quantum states of the form (13) was first solved for
polarization entangled photons [43]. Recently, such
states have been considered in a QST framework
devoted to time-bin qudits [29].

In our framework, we analyze, as a separate case,
the performance of the frames in QST of states
given by (13) by computing the average fidelity for
a sample of 200 entangled states (selected for the
whole spectrum of φ). Additionally, in order to
measure how much entanglement is retrieved from
the measurements, we compute the concurrence for
each density matrix ρout obtained from the QST
scheme [44, 45]. First, we obtain the spin-flipped
state ρ̃out which is defined as:

ρ̃out = (σy ⊗ σy) ρ∗out (σy ⊗ σy) , (14)
where ρ∗out stands for the complex conjugate (pro-
vided that we operate in the standard basis) and
σy denotes one of the Pauli spin matrices, i.e.

σy =

(
0 − i

i 0

)
. (15)

Then, the R-matrix is built by the formula

R :=
√√

ρout ρ̃out
√
ρout, (16)

which allows us to define the concurrence, C(ρout),
by means of the eigenvalues of the R-matrix

C(ρout) := max
{
0, α1 − α2 − α3 − α4

}
, (17)

where α1, α2, α3, α4 are the eigenvalues of the
R-matrix in the decreasing order. For any density
matrix ρ, the concurrence satisfies: 0 ≤ C(ρ) ≤ 1.
We have C(ρ) = 1 for maximally entangled states
and C(ρ) = 0 for separate states. Thus, the con-
currence can be considered an entanglement mono-
tone, which means that it can be applied to quantify
quantum entanglement, see [46].

Finally, as another figure of merit, we use
the average concurrence computed over the sam-
ple Cav(σ), which is presented in graphs as a func-
tion of the amount of noise.
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3. Results and discussion

In the main part of this paper, we compare the ef-
ficiency of two frames in QST of pure states which
describe four-level quantum systems. The frames

differ in the number of elements and for this rea-
son they were selected as the case study. The first
frame, denoted by ZMUB, consists of 20 vectors
which correspond to the elements of the MUBs for
dimH = 4 [47], i.e.,

|ζ1〉 =


1

0

0

0

 , |ζ2〉 =


0

1

0

0

 , |ζ3〉 =


0

0

1

0

 , |ζ4〉 =


0

0

0

1

 , |ζ5〉 =
1

2


1

1

1

1

 , |ζ6〉 =
1

2


1

1

−1
−1

 ,

|ζ7〉 =
1

2


1

−1
−1
1

 , |ζ8〉 =
1

2


1

−1
1

−1

 , |ζ9〉 =
1

2


1

−1
− i

− i

 , |ζ10〉 =
1

2


1

−1
i

i

 , |ζ11〉 =
1

2


1

1

i

− i

 ,

|ζ12〉 =
1

2


1

1

− i

i

 , |ζ13〉 =
1

2


1

− i

− i

−1

 , |ζ14〉 =
1

2


1

− i

i

1

 , |ζ15〉 =
1

2


1

i

i

−1

 , |ζ16〉 =
1

2


1

i

− i

1

 ,

|ζ17〉 =
1

2


1

− i

−1
− i

 , |ζ18〉 =
1

2


1

− i

1

i

 , |ζ19〉 =
1

2


1

i

−1
i

 , |ζ20〉 =
1

2


1

i

1

− i

 . (18)

The frame ZMUB = {ζ1, ζ2, . . . , ζ20} defines injective measurements which can be considered overcomplete.
We confront this frame with a minimal set of intensity measurements introduced by Vinzant [5]. The
minimal frame, which shall be denoted by ΛMIN, comprises 11 vectors

|λ1〉 =


1

0

0

0

 , |λ2〉 =


0

1

0

0

 , |λ3〉 =


0

0

1

0

 , |λ4〉 =


0

0

0

1

 , |λ5〉 =


1

9i

−5− 7i

−6− 7i

 ,

|λ6〉 =


1

1− i

−5− 2i

−1− 8i

 , |λ7〉 =


1

−2 + 4i

−4− 2i

3 + 8i

 , |λ8〉 =


1

−3 + i

1− 8i

7− 6i

 , |λ9〉 =


1

3− 3i

−8 + 7i

−6− 2i

 ,

|λ10〉 =


1

−3 + 5i

5 + 6i

2i

 , |λ11〉 =


1

−3 + 8i

5− 5i

−6− 4i

 , (19)

which are also sufficient to recover any unknown
vector |x〉 ∈ C4. For the sake of physical rigor,
before applying the method of least squares,
we normalize the frame vectors, i.e., |λ̃k〉 =

|λk〉 /
√
〈λk|λk〉, but this operation does not change

the algebraic properties of the frame.
In order to investigate the efficiency of each frame

in four-level state reconstruction, numerical simu-
lations were conducted, assuming different values
of the standard deviation σ, which governs the
experimental noise according to (6). A sample

of 12096 input states of the form (3) was consid-
ered and each state was reconstructed with mea-
surements distorted by the random unitary rotation
operators.

In Fig. 1, one can observe the average fidelity
Fav(σ) and the purity γav(σ) for a sample of four-
level states. The average fidelity, which gives the
overlap between the actual state and the result of
QST, is a crucial indicator of the accuracy of state
reconstruction. One can notice that the overcom-
plete frame, ZMUB, has a modest advantage over
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Fig. 1. Plots present (a) the average fidelity
Fav(σ) and (b) the purity γav(σ) in QST of four-
level systems with the frames ZMUB and ΛMIN.
Each point was obtained by the method of least
squares for a sample of 12096 input states of the
form (3). The formula (6) was applied for the mea-
surement results with the experimental noise gov-
erned by the standard deviation σ.

the minimal frame, ΛMIN. This result appears
rather surprising since the frames differ by 9 ele-
ments and one would expect more significant dis-
crepancies in the performance of the frames.

Only for moderate degrees of noise, i.e., as long
as σ < 0.9, the average fidelity corresponding to
the frame ZMUB is greater than the one result-
ing from applying ΛMIN. Interestingly, for highest
degrees of noise (i.e., σ > π/3), the performance
of ΛMIN in the QST framework is slightly better
than ZMUB.

The results seem even more intriguing if we in-
vestigate the average purity, γav(σ), presented
in Fig. 1b. It turns out that for σ ≥ π/18, the
average purity of the states ρout obtained from the
frame ΛMIN is greater than ZMUB. Both cases,
(a) and (b), included in Fig. 1, demonstrate that
the overcomplete frame ZMUB is advantageous only
for a little amount of noise.

Next, we consider QST of input states in the
form (13). Although it is a class of entangled states
which differ only in the relative phase φ, it is worth
stressing that we still follow the general formula for
an unknown density matrix (7). This means that
we select a sample of 200 states and in each case
we estimate the values of 16 parameters which com-
pletely characterize a four-level state. In Fig. 2, one

Fig. 2. Plots present (a) the average fidelity
Fav(σ) and (b) the concurrence Cav(σ) (b) in QST
of entangled qubits with the frames ZMUB and
ΛMIN. Each point was obtained by the method of
least squares for a sample of 200 input states of the
form (13). The formula (6) was applied for the mea-
surement results with the experimental noise gov-
erned by the standard deviation σ.

can observe the results of numerical simulations for
a wide range of the standard deviation σ, which
describes the degree of experimental noise.

One can notice a substantial advantage of ZMUB

over ΛMIN as long as the average fidelity is con-
cerned. The frame ZMUB outperforms ΛMIN up to
σ = π/3, where both plots converge.

Figure 2b presents the average concur-
rence Cav(σ). Interestingly, if σ > π/9, the
minimal frame ΛMIN leads to quantum states
which feature a greater amount of entanglement
than the results stemming from ZMUB. However,
in most applications, we are interested in detecting
entangled states sufficient to announce the violation
of the Bell inequality [48]. This can be guaranteed
if the concurrence satisfies C(ρ) > 1/

√
2 [49, 50].

Now we can conclude (see Fig. 2) that for σ ≤ π/9,
with either of the frames, we obtain such quantum
states that Cav(σ) > 1/

√
2. Thus, the interval

0 < σ ≤ π/9 can be considered the allowable
noise range which does not disturb the detection
of entanglement. Finally, we should stress that
for 0 < σ ≤ π/9, the frame ZMUB provides better
accuracy in terms of both the average fidelity
and concurrence, which proves the dominance of
the overcomplete frame within the relevant noise
interval.
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4. Summary and outlook

Two generic frames were implemented in QST
of four-level pure states. One frame, ZMUB, was
composed of the elements of the MUBs in the
four-dimensional Hilbert space, whereas the other,
ΛMIN, comprised 11 vectors sufficient for phase re-
trieval. In order to test the performance of the
frames, we introduced experimental noise into the
measurements by random unitary operators. For
a representative sample of four-level states, it was
discovered that ZMUB has a moderate advantage
over the minimal frame ΛMIN.

As a special case, we investigated QST of two-
qubit entangled states. First, we determined the
allowable noise range which guarantees the detec-
tion of entanglement. Then, it was demonstrated
that within this range ZMUB significantly outper-
forms ΛMIN, which proves that overcomplete frames
can be more beneficial in QST.

In the future, other classes of entangled states
(e.g., entangled qutrits) can be reconstructed with
different frames. The framework can also be ex-
tended by including additional types of experimen-
tal noise.
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