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Important properties of dynamical systems with a nonlocal evolution operator in the form of Caputo–
Weyl are considered. A double dimensional reduction of the evolutionary operator of a special form
connects various nonlinear fractional dynamical systems. For the integer values of the fractional param-
eter, we obtain the interrelation among various classical dynamical systems. In particular, it is shown
that with a special choice of the evolution operator and dimensional reduction, the one-dimensional evo-
lutionary Richards equation, the two-dimensional Gierer–Meinhardt system and the classical Lorenz
system are closely interconnected dynamical systems.
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1. Introduction

In the recent decade, in connection with diverse
problems of natural science, various methods of the
fractional integral and differential calculus have be-
come increasingly popular.

The dynamical systems (DS) theory is one of the
most powerful and far-advanced tools of modern
theoretical physics [1, 2]. With the development of
science, not only did the methods improve, but the
very concept of DS changed. Currently, the theory
of DS is a collective name for a wide range of stud-
ies, where various methods of modern mathemat-
ics and theoretical physics are used and fruitfully
combined.

The use of methods of fractional analysis gave
rise to a new concept — fractional dynamical sys-
tems (FDS). Among researchers working in this
area, there is a growing understanding that FDS
is not only a new powerful tool for modern theo-
retical and applied research, but also a deep and
far-reaching generalization of the concepts of clas-
sical DS [3]. Just as in the case of the classical
DS, in the most general case, discrete and con-
tinuous FDS are distinguished [4, 5]. In discrete
FDS or fractional cascades, the set of possible mo-
ments in time forms a discrete set, and the behav-
ior of the system is described by a sequence of dis-
crete states. A sequence of discrete states in the
phase space of the FDS forms the trajectory of
the cascade.

In continuous FDS or continuous flows, the set of
possible points in time forms a continuous set, and
the behavior of the FDS is described by a sequence

of continuous states. The set of possible points
in time and, accordingly, the state of the flow as
a rule are determined for each point of the real or
complex axis.

It is well known that cascades and flows of the
classical DS are the main subject of consideration
in symbolic and topological dynamics [6] and are in
demand in other branches of natural science, such as
nonequilibrium thermodynamics [7, 8], the theory
of dynamic chaos [9] and synergetics [2].

The main mathematical tool of the FDSs is
a method of the fractional differential equations.
The fractional differential equations and the re-
lated aspects were considered by many authors,
e.g., [10, 11].

In particular, to describe the properties of flows
of an FDS, it is necessary not only to general-
ize the definition of the evolution operator, but
also of the group of diffeomorphisms [3, 15, 16].
The complex form of the evolution operator, even
for relatively simple FDS flows, leads to the fact
that numerical solution methods become the main
tool. The few known analytical solutions are rare
exceptions [12–14].

This paper announces an important property of
the FDS: a continuous change in the fractional pa-
rameter of the evolutionary operator connects vari-
ous nonlinear fractional DSs and, for integer values
of the parameter, the classical ones. As an example,
a continuous change in the fractional parameter in
the classical nonlinear Lorenz system is traced. In
particular, it is shown that, under a special choice of
the evolution operator and dimensional reduction,
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the one-dimensional evolutionary Richards, the
two-dimensional Gierer–Meinhardt and the three-
dimensional classical Lorenz systems are closely in-
terconnected DSs.

2. Fractional Lorenz system

Let the derivative’s order of the FDS change from
the fixed value to zero. At the αi = 0, the corre-
sponding equation of motion (i) turns into a con-
straint and changes the evolution of the whole dy-
namical system.

As an example, let us consider the classical
Lorenz system (see [17]), where (x, y, z) ∈ R3,

ẋ = σ(y − x),

ẏ = ρx− y − xz,
ż = xy − βz.

(1)

All parameters of the Lorenz system are positive
σ, ρ, β > 0 and have a specific physical content.
Namely, σ is the Prandtl number, ρ is the reduced
Rayleigh number, and β is the geometrical ratio of
the model. The classical values of the parameters
used by Lorenz are as follows: σ = 10, β = 8/3 and
ρ = 28 [19]. The Lorenz system was historically the
first meaningful example of the ODE system with
a strange attractor which had explicit physical ap-
plications.

Let us consider the fractional generalization of
the classical Lorenz system, where we have to sub-
stitute the time derivative by the evolutionary op-
erator of the fractional derivative in the form of
Caputo–Weyl −∞Dα

t+. Then, we deal with
d

dt
→ dα

dtα
= −∞D

α
t+ − δα,0, (2)

−∞D
α
t+f(t) =

1

Γ(n− α)

t∫
−∞

dτ

(t− τ)
1+α−n

dnf(τ)

dτn
, (3)

where δα,0 is the Kronecker delta with α > 0,
Γ(x) is the Euler gamma function, n is expressed
as n = bαc+ 1 and bαc means the integer part of
the order α.

Thus, we have not the classical but the fractional
Lorenz system (FLS):

ẋ(αx) = σ(y − x),

ẏ(αy) = ρx− y − xz,
ż(αz) = xy − βz,

(4)

where 0 ≤ αi ≤ 1, (x, y, z) ∈ R3. For each set of
the derivative orders (αx, αy, αz), we have different
FLS.

There are a few examples in the literature of the
fractional generalization of the LS [20–22] (and ref-
erences therein). We, however, are interested in the
case with different derivative orders (αx, αy, αz) and
the evolutionary time operator of (2), which has not
yet been considered. This allows us to apply the di-
mensional reduction and some interesting relations.

The FLS equation (4) is invariant under trans-
formations (x, y, z) → (−x,−y, z) and has three
fixed points, i.e., the origin of the coordinates
O = (0, 0, 0) and two points O1,2

O1,2 =
(
±
√
β (ρ− 1),±

√
β (ρ− 1), ρ− 1

)
. (5)

Due to the Kronecker symbol δα,0 in the evolution-
ary operator (2), the fixed points of the FLS remain
unshifted for α = 0. Their stability depends on the
values of the parameters.

3. Dimensional reduction
of fractional Lorenz system

A qualitative difference in the properties of a dy-
namical system (DS) of the integer and fractional
order has always been noted (see the monographs
[3, 23]). Even a small deviation of the order of the
differential operator from an integer value α→ n−ε
means the transformation of the DS into an FDS,
i.e., a non-conservative DS. This, in turn, means the
disappearance of one or several integrals of motion,
a change of the asymptotic states, and a qualitative
change in the solution as a whole.

Unfortunately, not enough attention is paid to
the study of cases when the order of the differential
operator α changes significantly, i.e., α→ n−1+ε.
In this case, we can talk about the reduction or de-
generation of the DS into the DS of a lower order.
The idea of interrelation among DSs of different
orders is not new (see the monograph [24]), how-
ever, in fractional DSs it is practically not studied.
A continuous change of the order of an FDS makes
it possible to trace this process in detail.

Let us apply the two-dimensional reduction
to the FLS when only one dynamical variable
remains unchanged. In the three-dimensional
case, it can be done independently in three
ways: (i) (x)→ (y)→ (z); (ii) (x)→ (y)← (z);
and (iii) (x)← (y)← (z). With the used notation,
the scheme, for example, (x) → (y) → (z), means
that the equation for the function x(t) at αx → 0
becomes a constraint and it is substituted into the
equation for the function y(t). Further, at αy → 0,
the equation for the function y(t) becomes a new
constraint and is substituted into the equation for
the function z(t). Note that after the first substi-
tution we have a two-dimensional system. After
the second substitution, in turn, we obtain a one-
dimensional differential equation of the first order.

Analogously, one should read the scheme
(x)→ (y)→ (z). It means that the equation for the
function x(t) at αx → 0 becomes a constraint and is
substituted into the equation for the function y(t).
At αy → 0, the equation for the function y(t) be-
comes a new constraint and is substituted into the
equation for the function z(t). After the first substi-
tution, we have a two-dimensional system, and after
the second substitution we obtain a one-dimensional
differential equation of the first order. Therefore,
let us consider all the three cases in the following
subsections.
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3.1. DR: (x)→ (y)→ (z)

The first two equations in (2) turn into two
constraints. Upon substituting them into the
third equation of motion, we should obtain a one-
dimensional dynamical system. However, in this
case the double DR does not give us any dynami-
cal equation and degenerates into a set of the same
fixed points O, O1 and O2 in (5).

3.2. DR: (x)→ (y)← (z)

The FLS turns into the system
x = y,

ẏ(αy) = (ρ− 1)
(

1− y2

β

)
y,

z = y2

β .

(6)

For αy = 1, the second equation in (6) is the
Richards differential equation [25] — the evolution-
ary equation well known in biology:

ẏ =
(

1−
( y
K

)ν)
ay (7)

with ν > 0, a > 0. The solution of this equation is
the generalized logistic curve [26]:

y(t) = K
(

1 +Qe−aν(t−t0)
)−1/ν

,

Q =

(
K

y0

)ν
− 1, y0 = y(t0), (8)

which, alongside the ordinary logistic curve (ν = 1),
is a function widely used for modeling the popula-
tion growth. Therefore, the solution of the second
equation of the system for αy = 1 is

y(t) =

√
β

1 + (β/y20 − 1) e−2(ρ−1)(t−t0)
(9)

and y0 = y(t0).
Figure 1 shows the classical three-dimensional

Lorenz system. As an example, in Figs. 2 and 3,
asymptotic states of the dimensional reduction
of a fractional Lorenz system in case (b) are

Fig. 1. Classical three-dimensional Lorenz system
(1). The values of the parameters are classical:
σ = 10, β = 8/3 and ρ = 28.

Fig. 2. The Lorenz system (1) after a one-
dimensional reduction. The value of the pa-
rameters, fixed points and initial conditions are
the same.

Fig. 3. Solution of (9) and the asymptotic state
yas =

√
β for t → ∞. The behavior of this one-

dimensional system depends only on the two initial
parameters ρ and β.

presented. The values of the dimensionless param-
eters are the same as in the classical case (1). The
fixed points O1 and O2 in (5), corresponding to
these parameters, and the initial condition chosen
in the form x0 = y0 = z0 = 1 are marked in the
figure.

After the dimensional reduction (x) → (y), the
first equation becomes a constraint, and the system
effectively becomes two-dimensional. The result of
this reduction is shown in Fig. 2. Note that due
to the special choice of the differentiation opera-
tor (2), the position of the fixed points of the re-
duced system does not change. The system becomes
independent on the parameter σ. In the special
case of the Richards equation, for ν = 1, the logis-
tic equation corresponds to the initial Rössler-type
system [27].

After the second dimensional reduction of
(z)→ (y), the third equation becomes a con-
straint, and the system effectively becomes one-
dimensional. Figure 3 shows the solution of (9) and
the asymptotic state yas =

√
β for t → ∞. The

system depends on two initial parameters: ρ and β.
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3.3. DR: (x)← (y)← (z)

The FLS turns into the system
ẋ(αx) =

(
ρ

1+x2/β − 1
)
σx,

y = ρx
1+x2/β ,

z = xy
β .

(10)

assuming xas =
√

(ρ− 1)β, yas = xas, and
zas = ρ− 1. On the right-hand side of the system
(10), its fixed points at t → ∞ are indicated. For
αx = 1, the first equation of the system (10) is re-
lated to the Gierer–Meinhardt model well known in
biology [28], which in the dimensionless form could
be expressed as{

ẋ = a−Bx+ x2

y(1+Kx2) ,

ẏ = x2 − y,
(11)

where a, B and K are the constants. The model
described by (11) also has an important application
in chemistry, where it describes a two-component
autocatalytic reaction. The term x2

y(1+Kx2) corre-
sponds to the production of the activator x. For
x� 1, the quantity of the activator x achieves the
saturation value 1/(Ky). The inhibitor production
y is activated by the activator x and corresponds to
the second equation of the equation system (11).

The first equation of the one-dimensional Gierer–
Meinhardt model for y = x and a = 0 directly leads
to the first equation in (10) for αx = 1:

ẋ =
x

1 +Kx2
−Bx. (12)

The correspondence of the parameters in (10)
and (12) could be expressed in the explicit form
(αx = 1):

σ = B, β = 1/K, ρ = 1/B. (13)
The model (12) is used in ecology as a model of pop-
ulation dynamics with the polynomial growth and
constant trade of the population [29]. This model
and the result of the dimensional reduction (10) ad-
mit the analytical solution with the dependence of
the model parameters. The analytical solution of

ẋ =

(
ρ

1 + x2/β
− 1

)
σx, (14)

when x(0) = x0, is an analytical function in the un-
explicit form:

e2bt =
1

ξ2

(
ξ2 + a

1 + a

)ρ
. (15)

Here
a ≡ (1− ρ)β/x20, b ≡ (1− ρ)σ,

ξ ≡ x/x0. (16)
The analytical solution of (10) is shown in Fig. 4.
For better visibility, the scale of the plots has been
changed.

Thus, we may conclude that after the two-
dimensional reduction, the initial FLS (4), depend-
ing on the way of reduction, reduces to the Richards
or a special case of the Gierer–Meinhardt model or
the model of the population dynamics.

Fig. 4. Solutions of the system (9) after a two-
dimensional reduction and their asymptotic states
xas = yas =

√
(ρ− 1)β and zas = ρ − 1. The

behavior of this degenerate system also effectively
depends only on the two initial parameters.

Note here that the differential operator (2) con-
tinuously depends on the derivative order α. This
means that by changing the derivative order we ob-
tain a continuous transition from one FLS to an-
other. Nevertheless, this deformation of the phase
flow is certainly not a topological map, because
the dimension of the phase flow is a topological
invariant.

It is no wonder that, upon performing certain pro-
cedures, a three-dimensional DS turns into a one-
dimensional DS. The point, however, is that this
type of dimensional reduction allows answering the
question which is of particular significance in the
theory of dynamical systems: how in a complex one-
dimensional DS is it possible to see a simple multi-
dimensional DS? The example of the FLS shows
that the three-dimensional Lorenz system may be
restored from the one-dimensional Richards equa-
tion (7) (with the accuracy up to the σ-parameter)
and from the one-dimensional Gierer–Meinhardt
equation (12).

4. Physical aspects
of fractional Lorenz system

The simplest fractional physical systems, for ex-
ample, the fractional harmonic oscillator [3, 4], show
that such systems are physical systems with dissi-
pation. Since the real physical systems observed in
nature are most often dissipative, this means that
FLS is more realistic than the classical LS. In this
sense, the classical LS can be considered as a special
case of FLS.

Edward Lorenz proposed his LS (1) as a sim-
plified mathematical model of atmospheric convec-
tion [17–19]. Originally, LS is a three-dimensional
physical system. The method of dimensional
reduction proposed in the article shows how
a three-dimensional physical LS (1) can degener-
ate into a two- and even one-dimensional system
(see (6) and (10)).

The continuous change in the order of the sys-
tem αi allows us to trace in detail theprocess
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of degeneration of a physical system from three-
dimensional to one-dimensional. Due to the relative
simplicity of the nonlinear LS, the solutions of the
corresponding reduced evolutionary equations can
be represented in an analytical form (see (1) and
(14)–(16)).

Dimensionless parameters of the model σ, ρ and
β have a direct physical meaning. Therefore, σ is
the Prandtl number Pr, ρ is the normalized Rayleigh
number Ra, and β is the geometric parameter of the
model. The dimensional reduction of the LS shows
how the corresponding parameters of the model
are interrelated. As follows from the solutions (6)
and (10), in this scheme of dimensional reduction,
(ρ − 1) determines the rate of the two-dimensional
evolutionary process, and

√
β is the limiting max-

imum value of the dimensionless quantity y. The
physical meaning of the quantity y depends on the
specific type of the model.

It is well known that the Lorenz equations also
arise in simplified models of laser physics, in some
models of dynamos, thermosiphons, brushless DC
motors, electrical circuits, chemical reactions, and
direct osmosis. The Lorenz equations are also the
governing equations in the Fourier space for the
Malkus water wheel (see [17, 18] and references
therein).

In the classical LS and the models listed above,
the effective degeneration of a three-dimensional
system into a two- or even one-dimensional system
is quite appropriate and is of special interest. In
all cases which are reduced to the Lorenz model,
the results of this article are applicable, demon-
strating the relationship of the corresponding so-
lutions and model parameters. It is interesting that
the proposed dimensional reduction is applicable in
the opposite direction: from the one-dimensional
system (10), by means of inverse transformations,
one can obtain a two-dimensional system (6) and
a three-dimensional system (1). This means that
if we know that the one-dimensional approxima-
tion of a physical process evolves according to the
model (10), and we know that the system is actu-
ally three-dimensional, then, according to the pro-
posed method, it can be completely restored. So, in
the case of a one-dimensional logistic model, the di-
mensional reduction connects this model to another
well-known nonlinear model, the so-called Rössler
model [27].

The emergence of a related nonlinear model sug-
gests the idea of applying the proposed method of
dimensional reduction to other nonlinear evolution-
ary systems. The application of the proposed tech-
nique in the theory of the second-order phase tran-
sitions also looks promising.

5. Conclusions and discussion

As follows from the two-dimensional reduction,
the nonlinear Lorenz system relates to the Richards
and the Gierer–Meinhardt systems and depends on
the type of reduction.

From the mathematical point of view, a sufficient
condition for the existence of a fractional derivative
belongs to the class of continuous functions, see [13].
In other words, a continuous but non-differentiable
function can never be the solution of a classical DS,
while it can be for an FDS. The physical content of
the FDS is in the process of construction [3, 23], but
even now we can note that FDSs are a generaliza-
tion of the classical DSs when the classical concept
of velocity does not work.

The core object is the evolutionary operator in
the form of the fractional derivative. However, the
latter may be not only in the Caputo–Weyl form,
but also in that of Riemann–Liouville, Riesz, Feller,
Hadamard etc., see [30]. How much do the FDS
properties depend on the form of its introduction?
The basic criterion while introducing the FDS is the
physical correspondence between the fractional and
the classical DSs systems: when the order of the
fractional derivative α→ 1, an FDS must turn into
a classical DS: FDS D−−−→

α→1
S.

Another important field of FDS is the dimen-
sional reduction: for α → 0, part of the dynamical
equations turn into constraints. We obtain a unique
tool: the phase semi-flow of the rank n under con-
tinuous limit transition α → 0 turns into a phase
semi-flow of the rank n − 1 and into certain con-
straints. An interesting result concerning the clas-
sical Lorenz system has been considered in Sect. 3.
In the general case, the correlation among the clas-
sical DSs of different dimensions deserves a detailed
analysis.

The above-considered FDSs belong to the class
of continuous DSs. The relation of the FDS with
the ergodic theory and topological DSs is absolutely
unclear.
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