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Nonlinear propagation properties of ion-acoustic solitary and rogue waves are investigated with the use
of a quantum plasma model composed of degenerate (Fermi) positrons and electrons gas with negative
and positive ions as classical fluid gas. The Korteweg–de Vries equation is derived using the reductive
perturbation technique to study its solitary solution. The nonlinear Schrödinger equation has been
transformed from the Korteweg–de Vries equation and its rational solution describes the rogue wave.
The ion-acoustic rogue and solitary waves have been numerically analyzed to examine the effects of the
plasma parameters on the phase velocity and the behavior of the solitary and rogue waves. Negative
ions density and mass, in addition to the density and temperature of the Fermi positrons and electrons,
are checked. The results of this study can be applied in the dense (quantum) plasma in technological
applications and astrophysics, such as in magnetars corona and white dwarfs.
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1. Introduction

Many kinds of waves are found in the ordinary
plasma which is composed of electrons and posi-
tive ions [1]. In nonlinear mode, different physical
parameters can affect the dispersion or nonlinear-
ity to induce various types of acoustic waves [2–4].
Among them, the ion-acoustic waves (IAWs) are one
of the most familiar types. Studying the dynamics
and properties of the propagation of the IAWs is of
great importance and attracted many researchers
in the last four decades [5–7]. They investigated the
behavior of the IAWs in the electron-ion plasma in
the presence of more species as positrons, dusts, or
negative ions. The negative ion plasma which con-
tains negative ions in addition to the electrons and
positive ions has a lot of applications in astrophysi-
cal objects and various fields of plasma science and
technology [8–12].

In the last few decades, quantum plasma has re-
ceived more interest due to its importance in many
interesting plasma science technology applications
as laser fusion plasmas, semiconductors, microelec-
tronic devices and nanoscale systems in addition to
high dense astrophysical objects as in pre-supernova
stars, the cores of white dwarfs and neutron stars.
In such environments, the Thomas–Fermi approx-
imation can describe high-density electrons, which
can be considered as a degenerate ideal Fermi gas,
while ions are the classical gas [13–22]. There are
many plasma parameters in a plasma system but

it is really complicated to study all parameters in
one framework to examine the nonlinear wave dy-
namics in the astrophysical compact objects for
both space and laboratory.

A rogue wave was first investigated by Peregrine
who described it by the rational solution of the
nonlinear Schrödinger (NLS) equation. After that,
many laboratory experiments were carried out to
generate rogue waves (RWs) in the negative ions
plasmas [23, 24]. Rogue waves can be described by
the rational solution of the NLS equation. The
NLS equation is very important to study the dy-
namics of waves in condensed matters, and non-
linear optics [25–28]. Rogue (or freak) waves have
a great importance in ocean and marine studies
as they were first observed and measured in ocean
waves, and have attracted the attention of many re-
searchers because of the dangers they posed to ships
and boats [29–32]. Hence, studying and understand-
ing the behavior of rogue waves may, on the one
hand, help seafarers avoid dangers at sea and, on
the other hand, facilitate the generation of highly
energetic pulses. Rogue waves have been studied
in many branches as plasma physics science, non-
linear optics, and astrophysics. Rogue waves can
be investigated in degenerate electron–positron–ion
plasmas in magnetars corona and white dwarfs [33]
through the discussion of the nonlinear solitary
waves/solitons/shock waves/double layers for dif-
ferent astrophysical objects in space using different
models for plasma systems.
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Recently, many researchers have studied rogue
waves [27, 28, 31, 32, 34, 35]. The effects of various
physical parameters on the profile of rogue waves
have been studied in different plasma environments.
In the previous studies, the nonlinear Schrödinger
equation was used to study the Langmuir waves for
electron–positron plasma systems [28] where it was
found that the rogue structures strongly depend on
the density and temperature. Another study [31]
was done on super rogue waves using the multiscale
perturbation method and the nonlinear Schrödinger
equation, where the authors considered degenerate
Thomas–Fermi plasma systems with cold inertial
ions and the Thomas–Fermi distributed electrons
and positrons. A broad study was also done on the
neutron star formation [32, 34]. The study of rogue
waves in a two-component plasma consisting of
classical ions and temperature degenerate trapped
electrons was reported by El-Tantawy et al. [35].
They observed the effect of various physical pa-
rameters on the characteristics of rogue waves such
as the temperature of degenerate trapped electrons
and wave number. However, none of these papers
could provide a clear study about both the ion-
acoustic solitary and rogue waves in pair ion plas-
mas with degenerate positrons and electrons. Ow-
ing to the importance of pair–ion plasma as well
as rogue waves, the study of the ion-acoustic non-
linear solitary and rogue waves is of paramount
interest.

In the present investigation, we study the prop-
agation properties of ion-acoustic (IA) solitary
waves as well as the ion-acoustic rogue waves in
positive and negative ion plasma with degener-
ate (Fermi) positrons and electrons. The effects
of various physical parameters have been checked
on the characteristics of the solitary and rogue
waves in such plasma which can be found in
many astrophysical plasma systems as in magne-
tars corona and white dwarfs. We have derived
the Korteweg–de Vries (KdV) equation to study its
solitary wave solution, and the NLS equation has
been transformed from the KdV equation and has
been solved analytically to study the rogue wave
solution.

The paper is organized as follows: We have de-
rived the KdV equation in Sect. 2, the effects of
some physical parameters have been checked to the
propagation and the shape of the produced acous-
tic waves. In Sect. 3, the NLS equation has been
transformed from the KdV equation and has been
solved analytically to study the rogue wave solution.
We investigated numerically the influences of the
plasma parameters on the rogue waves. In Sect. 4,
the results are summarized.

2. KdV equation and solitary waves

We consider a collisionless nonmagnetized plasma
consisting of positive ions and negative ions, with
degenerate (quantum) electrons and positrons. The

nonlinear propagation of the electrostatic excita-
tions is governed by a system of fluid equations
for both charged ions, positive and negative ones.
The normalized continuity and momentum equa-
tions considered are of the form

∂n±
∂t

+∇ · (n±u±) = 0, (1)(
∂

∂t
+ u+ · ∇

)
u+ = −α∇φ, (2)(

∂

∂t
+ u− · ∇

)
u− = ∇φ. (3)

To avoid the complexity of mathematical deriva-
tions, it is assumed that the pressure gradient
force is infirm when compared with the electrostatic
force. Here, we are interested only on the acoustic
waves propagating parallel to the magnetic field.
The presence of a strong magnetic field in white
dwarfs or magnetars obstructed the charges motion
perpendicular to the magnetic field due to flux freez-
ing. The motion of the charges parallel to the mag-
netic field is important since electrostatic acoustic
waves exist when the propagation is parallel to the
magnetic field. Thus, we investigate the potentials
moving parallel to the strong magnetic field.

We shall use the Thomas–Fermi law for degener-
ate gas of electrons and positrons [13], respectively

ne = θ (1 + φ)
3/2

, (4)

and
np = ϑ (1− τφ)3/2 . (5)

The Poisson equation reads
∇2φ = n− − n+ + ne − np, (6)

where nj for j = +,−, e, p is the number den-
sity of the positive ion, negative ion, electron, and
positron, respectively. Each density nj is normal-
ized by the unperturbed number density n+0. The
positive/negative ion fluid velocity u± is, in turn,
normalized by ion sound speed cs+ =

√
kBTF/m+,

while the electrostatic wave potential φ is normal-
ized by kBTF/e. Here, α = m+/m− is the mass
ratio, where m± is the mass of positive (negative)
ion with m− ≈ 10−14M�. The temperature ratio
is defined as τ = TFp/TFe, where TFe (TFe = 106 K)
and TFp are the electrons and the positron Fermi
temperature, respectively. The space and time
variables are in units of the ion Debye radius
λD+ =

√
kBTF/

(
4πe2n+0

)
and the ion plasma pe-

riod ω−1p+ =
√
m+/

(
4πe2n+0

)
, respectively. The

neutrality condition implies
1 = η + θ − ϑ, (7)

where η = n−0/n+0, θ = ne0/n+0, and
ϑ = np0/n+0 (the index “0” denotes the unper-
turbed density of states) with n+0 ' 1028 cm−3.
In the calculations, we shall use the relative ra-
tios because of the normalization of the physical
parameters.

635



U.M. Abdelsalam

To investigate the electrostatic waves propagat-
ing in multicomponent degenerate plasma, we use
the reductive perturbation method. At first, we
introduce the stretched coordinates [36, 37]:

X = ε1/2 (x− ρt) (8)

and
T = ε3/2t, (9)

where ε is the small (real) parameter and ρ is the
wave propagation speed. The dependent variables
are expanded as

Υ = Υ (0) +

∞∑
n=1

εnΥ (n), (10)

where Υ = {n+, n−, np, ne, u+, u−, φ}T and
Υ (0) = {1, η, ϑ, θ, 0, 0, 0}T. Employing the expan-
sions and the stretching into (1)–(6), we can obtain
distinct orders in ε. In the lowest-order in ε,
one has

n
(1)
+ =

1

ρ2
φ(1), u

(1)
+ =

1

ρ
φ(1), (11)

n
(1)
− = −αη

ρ2
φ(1), u

(1)
− = −α

ρ
φ(1), (12)

n(1)e =
3θ

2
φ(1), (13)

n(1)p =
3ϑτ

2
φ(1). (14)

The Poisson equation provides the compatibility
condition

ρ =

√
2

3

(
1 + αη

ϑτ + θ

)
. (15)

From the phase velocity ρ equation we notice the
role played by the negative-to-positive ion density
ratio η as well as by the negative-to-positive ion
mass ratio α on the change of the phase velocity
value ρ. In Fig. 1a, we observe that an increase
of the concentration of the negative ion leads to
a shrinkage of the phase velocity ρ. The phase
motion between the positive and negative ions
can physically justify the increase (or the de-
crease) of ρ with decreasing (or increasing) content
of the negative-to-positive ion density ratio η.
It is clear, however, that the phase velocity ρ
increases when increasing the negative-to-positive
ion mass ratio α.

Figure 1b shows what is the role of the degener-
ate electron and positron density and temperature
in slowing down the phase velocity. We can no-
tice that increasing electron and positron density
concentrations (θ and ϑ) and Fermi temperature τ
lead to a decrease in the phase velocity ρ.

The next-order of the expansion in ε is a system of
equations in the second-order perturbed quantities.
Solving it, we can obtain the KdV equation, namely

∂φ

∂T
+Aφ

∂φ

∂X
+B

∂3φ

∂X3
= 0. (16)

Fig. 1. The variation of phase velocity ρ with dif-
ferent parameters. (a) The variation of phase ve-
locity ρ vs η (negative-to-positive ion density ratio)
and α (mass ratio). (b) The variation of phase ve-
locity ρ vs θ (electron and positron density ratio)
and τ (temperature ratio).

For simplicity, we shall assume φ(1) ≡ φ. The
nonlinearity “A” and the dispersion coefficient “B”
are given accordingly as

A = 3B

(
1

ρ4
− ηα2

ρ4
+
ϑτ2 − θ

4

)
, (17)

and

B =
ρ3

2 (1 + αη)
. (18)

Note that (16) is the well-known KdV equa-
tion which has been solved using many methods,
e.g., [38]. In this paper, we will apply the traveling
wave transformation ξ = X−νT , where ν represents
the constant speed. This transformation can reduce
the KdV equation to an ordinary partial differential
equation which can be simply solved. As a result,
one gets the soliton solution given by

φ = φmsech2
(
ξ

W

)
, (19)

where φm = 3ν/A represents the amplitude of the
soliton wave, whileW =

√
4B/ν is the soliton wave

width. It is clear that the soliton speed ν is propor-
tional to φm and inversely proportional to W .

The characteristics of small amplitude solitons
depend on the dispersion coefficient B and the non-
linearity coefficient A in the KdV equation. It is
known that the balance between the nonlinearity
and dispersion in the nonlinear evaluation equation
will produce a soliton wave in general. Some param-
eters might increase (or decrease) the nonlinearity
or the dispersion, thus aggregating or destroying
an amount of energy that makes the pulses taller or
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Fig. 2. The variation of the soliton width W with
different parameters. (a) The variation of the soli-
ton width W vs η (negative-to-positive ion density
ratio) and α (mass ratio). (b) The variation of the
soliton widthW vs θ (electron and positron density
ratio) and τ (temperature ratio).

shorter. In the case of the amplitude φm = 3ν/A,
it is inversely proportional to the nonlinear coeffi-
cient A. Since B is positive, this means that one
deals, as expected, with the physical parameter —
the pulse width W . We can see that the value of B
decreases when increasing η, and, it increases when
increasing α. This indicates that increasing the neg-
ative ions concentration makes the wave pulse nar-
rower. However, increasing the mass of the negative
ions one makes the wave pulse wider, as depicted
in Fig. 2a. From (15) and (18) one can see that

the increase of the values of the electron-to-positive
ion density ratio θ (which from (7) it is equivalent
to the increase of the positron-to-positive ion den-
sity ratio ϑ) as well as of the electrons-to-positron
temperature ratio τ will decrease the value of B.
This, in fact, indicates the role of the concentra-
tions or temperatures of both degenerate electrons
and positrons on decreasing or increasing the width
of the soliton pulse. This effect is also depicted in
Fig. 2b, where one can observe that increasing θ
and τ values reduces the pulse width W .

3. NLS equation and rogue waves

Now, we can derive the nonlinear Schrödinger
(NLS) equation to study the modulational insta-
bility of weakly nonlinear wave packets described
by (16). We consider the solution to the KdV equa-
tion in the form of the weakly modulated sinusoidal
wave by expanding φ as in [36]. We obtain

φ(X,T ) =

∞∑
n=1

∞∑
l=−∞

εnφ
(n)
l (χ, σ)e i l(λX−δT ),

(20)
where λ is the wave number and δ is the angular
frequency. The stretched variables are given as

χ = ε (X + %T ) , (21)
and

σ = ε2T, (22)
where % is the group velocity. The derivative op-
erators which appeared in the system of the basic
equations become

∂

∂T
−→ ∂

∂T
+ ε%

∂

∂χ
+ ε2

∂

∂σ
, (23)

and
∂

∂X
−→ ∂

∂X
+ ε

∂

∂χ
. (24)

Applying (21)–(24) into (20), we obtain

− i lδφ
(n)
l + %

∂φ
(n−1)
l

∂χ
+
∂φ

(n−2)
l

∂σ
+A

∞∑
n′=1

∞∑
l′=−∞

(
i lλφ

(n)
l φ

(n−n′)
l−l′ + φ

(n−n′−1)
l−l′

∂φ
(n)
l

∂χ

)

+B
(
− i l3λ3φ

(n)
l − 3l2λ2

∂φ
(n−1)
l

∂χ
+ 3i lλ

∂2φ
(n−2)
l

∂χ2
+
∂3φ

(n−3)
l

∂χ3

)
= 0. (25)

Proceeding to the third-order approximation
(n = 3) and solving the first harmonic equations
(l = 1), we can derive the NLS equation of the form

i
∂Φ

∂σ
+

1

2
R
∂2Φ

∂χ2
+ ZΦ|Φ|2 = 0, (26)

where Φ ≡ φ
(1)
1 for simplicity. The nonlinear and

dispersion coefficients Z and R are given by

Z =
A2

6Bλ
(27)

and
R = 6Bλ. (28)
A rational solution of (26) is located on a nonzero

background and is localized both in the σ and χ
directions [37]. Namely,

Φ =
4√
Z

(
1 + 2iσ

1 + 4σ2 + 4
Rχ

2
− 1

4

)
e iσ. (29)

In fact, this solution can explain the rogue wave
since such solution can concentrate great amounts
of energy into a relatively small area in space.
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Fig. 3. The rogue wave profile Φ for different val-
ues of α (mass ratio). (a) The rogue wave profile Φ
vs σ and χ for α = 0.8 at η = 0.9, θ = 0.8, τ = 0.9
and ϑ = 0.7. (b) The rogue wave profile Φ vs σ
and χ for α = 0.9 at η = 0.9, θ = 0.8, τ = 0.9 and
ϑ = 0.7.

Fig. 4. The rogue wave profile Φ for different val-
ues of η at θ = 0.4. (a) The rogue wave profile Φ vs
σ and χ for η = 0.8 at θ = 0.4, τ = 0.9 and α = 0.9.
(b) The rogue wave profile Φ vs σ and χ for η = 0.9
at θ = 0.4, τ = 0.9 and α = 0.9.

It is important to indicate the sign of RZ to study
the stability of the amplitude and the profile wave
shape. It turns out that when the sign of RZ is
positive, which is necessary to increase a random
perturbation of the amplitude, then consequently
a rogue wave can be found. However, the negative

Fig. 5. The rogue wave profile Φ for different val-
ues of η at θ = 0.9. (a) The rogue wave profile Φ vs
σ and χ for η = 0.8 at θ = 0.9, τ = 0.9 and α = 0.9.
(b) The rogue wave profile Φ vs σ and χ for η = 0.9
at θ = 0.9, τ = 0.9 and α = 0.9.

sign of RZ causes that the rogue wave amplitude
is stable. Now, we numerically analyze the wave
envelope Φ and examine the effects of different pa-
rameters on the profile of the rogue waves. One
can expect that the degenerate (Fermi) electrons
and positrons have an important role in the prop-
agation properties of the wave envelope. Also, we
study how the density and mass of the negative ions
affect the profile of the wave envelope Φ.

In Fig. 3, we have plotted the wave envelope Φ
profile with various values of negative-to-positive
ion mass ratio α. We notice that increasing the
negative ion mass enhances the nonlinearity mak-
ing the rogue wave taller. The negative ion density
plays an important role in the behavior of the rogue
wave. In numerical calculation, one observes critical
values of θ and η, at which the nonlinear coefficient
A equals zero — the rogue disappears then. For low
values of θ (θ = 0.4), the amplitude increases with
increasing value η (see Fig. 4). In turn, for high
value of θ (θ = 0.9,) the amplitude decreases with
increasing value of η (see Fig. 5). This clears up
the importance of degenerate electrons (positrons)
density as well as the negative ion density in the be-
havior of the ion-acoustic rogue wave in the dense
(quantum) plasmas.

Figure 6 depicts the variation of the rogue wave
profile with θ. The larger the value of θ (which
is equivalent to a larger value of ϑ), the larger the
decrease in the value of the amplitude. This shows
an important role of the Fermi electrons (positrons)
density in minimizing the rogue wave energy, con-
sequently making the rogue wave shorter.
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Fig. 6. The rogue wave profile Φ for different val-
ues of θ. (a) The rogue wave profile Φ vs σ and χ
for θ = 0.5 at η = 0.8, τ = 0.9 and α = 0.9. (b)
The rogue wave profile Φ vs σ and χ for θ = 0.6 at
η = 0.8, τ = 0.9 and α = 0.9.

Fig. 7. The rogue wave profile Φ for different val-
ues of τ . (a) The rogue wave profile Φ vs σ and χ
for τ = 0.85 at η = 0.8, θ = 0.9 and α = 0.9. (b)
The rogue wave profile Φ vs σ and χ for τ = 0.95
at η = 0.8, θ = 0.9 and α = 0.9.

In Fig. 7, we see that when increasing the
electrons–to–positron temperature ratio τ , the
value of the amplitude will decrease. This means
that increasing the Fermi positrons temperature
makes the rogue wave shorter, while by increasing
the Fermi electrons temperature, the rogue wave
will be taller.

4. Summary

The nonlinear properties of ion-acoustic solitary
and rogue waves have been investigated in lab-
oratory plasmas and many astrophysical plasma
systems, such as in magnetars corona and white
dwarfs. In this paper, we studied a super-dense
plasma model composed of the Thomas–Fermi
positrons and electrons with fluid negative and pos-
itive ions. We have derived the KdV equation based
on the reductive perturbation technique. We stud-
ied the behavior of (IA) solitary waves in quantum
plasma, including the dependencies of plasma pa-
rameters on the phase velocity and the profile of
the soliton wave.

The NLS equation has been transformed from the
KdV equation to study its rational solution which
describes the rogue wave. The influences of various
plasma parameters on the (IA) solitary and rogue
waves have been checked. In particular, when the
amplitude increases, then the nonlinearity increases
as well, and vice versa. Further, when the physical
parameter increases the amplitude, then more en-
ergy is pumped into the plasma system and the non-
linearity effects are seen. We can notice that, for ex-
ample, with the increase of the Fermi positrons tem-
perature, more energy is pumped into the plasma
which leads to the amplitude enhancement. The
presence of the negative ions in the quantum plasma
model plays a crucial role in the propagation of the
waves. We have numerically analyzed the effect of
the increase of negative ions density and mass on the
amplitude and width of the induced rogue waves.
In addition, we analyzed how the increase of η will
increase/decrease the amplitude for low and high
values of degenerate electrons (θ) and degenerate
positrons (ϑ). For some critical values of η and θ,
the rogue wave should disappear. When increasing
θ, ϑ and τ , it will shrink the phase velocity and then
it makes the solitary and rogue waves shorter and
narrower. The present study is important to under-
stand the behavior of IA solitary and rogue waves
in the dense (quantum) plasma in technological ap-
plications and astrophysics, such as in magnetars
corona and white dwarfs.

Previous studies considered a neutron star to
have a core, crust, and possibly an ocean with some
modes trapped in each of these regions [39–41]. The
authors discussed the characteristics of superfluid-
ity (based on neutron density and corresponding
temperature) which is one of the most frequently
used parameters to predict (because there is not
enough information about the inner core yet) that
a nonlinear wave is a longitudinal wave or/and
a transverse wave as well. Again, oscillations for
the neutron stars are produced by crustal glitches,
by the impact of matter accretion, and by ther-
monuclear explosions [42–44]. Very recently, some
authors studied rogue waves and neutron stars in
different conditions like electron/positron density
and temperature [28], degenerate Thomas–Fermi
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plasma [31], newly created neutron-capture ele-
ment [34], and electron beams [45]. They made
profound studies considering different conditions in
space based on different evidences for various astro-
physical compact objects.

Finally, the results of this study could be useful
in understanding some nonlinear behaviors in dif-
ferent regions and other physical phenomena like
a condensation of rogue and double layers where
some of the phenomena could also be reported to
be found in the laboratory, as well as in space and
astrophysical environments.
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