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Motivated by the proposal for quantification of Bell nonlocality Phys. Rev. A 92, 030101 (2015), and
the concept of ICPS symmetric states Phys. Rev. A 95, 042333 (2017), we present applications of those
tools in the case of the physical system, namely photon-number entangled states generated in Kerr media
with optical parametric pumping Prog. Opt. 41, 361 (2000). We start from the projection of a density
matrix of the considered physical system to the family of ICPS states. For each step of the considered
time evolution, we subsequently calculate both the negativity and negativity of projections to examine
the lower bound of entanglement versus the actual one. Then we use those projections to calculate the
lower bound of nonlocality for the volume of violation.
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1. Introduction

Quantum correlations play a crucial role in many
practical applications of quantum mechanics. They
are used in quantum teleportation protocols, quan-
tum computation algorithms, and quantum cryp-
tography, to name just a few. For that reason, much
effort has been put into the development of quan-
tum correlation measures such as measures of quan-
tum entanglement and quantum nonlocality. As it
was discussed in [1] (and later continued in [2, 3]),
there exist states that, although not maximally en-
tangled, maximally violate a given Bell-type in-
equality. Such an anomaly was an inspiration for
the development of a new type of quantum nonlo-
cality measures, namely, the volume of violation [4].
This innovative approach changed the way we quan-
tify nonlocality.

In this paper, we study a model of two nonlin-
ear Kerr oscillators mutually coupled by parametric
pumping described in [5]. For such a system, we cal-
culate a quantum measure of entanglement, namely,
the negativity. Next, we project the time evolution
of the density matrix of the given state into the
family of incomplete-permutation-symmetric states
(ICPS) [6]. For such a time evolution of projected
states, we again calculate the negativity and then
compare all those results with the volume of viola-
tion to show the relation between them.

2. Model

We consider a system composed of two nonlin-
ear Kerr oscillators mutually coupled by parametric
pumping. In the given system, pairs of photons via
spontaneous parametric down-conversion are pro-
duced. The Hamiltonian describing the analyzed
system takes the form [5]

Ĥint =
χa
2
(â†)2â2 +

χb
2
(b̂†)2b̂2 +Gâ†âb̂†b̂

+gâ†b̂† + gâb̂. (1)
The first two terms of the Hamiltonian describe the
nonlinear Kerr-type oscillators characterized by the
nonlinearity constants χa and χb. The next term is
the Kerr cross term, whereas the last two ones are
related to the two-mode parametric process. Pa-
rameter g represents the strength of the external
field. Operators â†(b̂†) and â(b̂) are the creation
and annihilation operators, respectively, related to
the subsystems A(B).

The assumptions used in the analysis are: the
strength of the external field g = 0.6, the nonlinear-
ities χa = χb = 1, and the nonlinear coupling con-
stant G = 2χa. Moreover, the initial state is set
to |ψ(t = 0)〉 = |0〉a|0〉b. The fact that our system
starts from the vacuum state and g < χa+χb prac-
tically limits the time evolution to three possible
states. Thus, the truncated wave function can be
expressed in the following form:
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|ψ(t)〉cut = c00(t)|00〉+c11(t)|11〉+c22(t)|22〉, (2)
where |cii| stands for the probability of finding our
system in state |ii〉. To show to what degree the
trunctuation is accurate, in Fig. 1 we present the
function 1− F (t). Here,

F (t) = |c00|2 + |c11|2 + |c22|2 (3)
and is calculated for the “full” wave function ob-
tained from numerical analysis. In this way, we
determine whether or not we have truncated prob-
abilistically significant states from the “full” wave
function. In Fig. 1, we can see that the deviation of
the function F (t) from unity is of the order of 10−5,
and hence, the states with a higher number can be
neglected.

3. Projection

In our study, we want to compare the generation
of entangled states in the evolution of our system
with the entanglement production of the projection
onto the recently introduced ICPS states [6]. The
ICPS is a family parametrized by five real numbers
that, in general, describes mixed states with a prop-
erty of high symmetry. The operation of projection
(often termed twirling) was introduced in [7]. Im-
portantly, this operation cannot increase the degree
of entanglement because local unitary operations
cannot increase the entanglement either [8].

Let ρ(t) = |ψ(t)〉cut ⊗cut 〈ψ(t)|. The density ma-
trix ρ̃(t) of the projected state P : ρ → ρ̃ takes the
form:

ρ̃(t) =



a1 0 0 0 b1 0 0 0 b2
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

b1 0 0 0 a1 0 0 0 b2
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

b2 0 0 0 b2 0 0 0 a4


, (4)

where a1 = 1
2 (|c00|

2 + |c11|2), a4 = 1 − 2a1,
b1 = Re(c00c11), b2 = Re(c00c22) + Re(c11c22).
The time evolution of the projection parameters
corresponding to the density matrix ρ̃(t) is pre-
sented in Fig. 2. We can see that the two param-
eters most fluctuating in time are b1 and b2, which
are related to off-diagonal elements of the density
matrix ρ̃(t).

4. Entanglement
and volume of violation

To quantify the amount of entanglement gener-
ated in our system, we used a well-established mea-
sure of entanglement called negativity [9–11]. In the
most general scenario, negativity is defined as:

N(ρ) = (‖ ρTA ‖1 −1)/2, (5)

Fig. 1. Time evolution of the 1−F (t) function for
|ψ(t = 0)〉 = |0〉a|0〉b, χa = χb = 1, and g = 0.6.
Time is scaled in the units of 1/χa,b.

Fig. 2. Time evolution of a1, a4, b1, b2 as elements
of projected density matrix ρ̃(t). The values of pa-
rameters are the same as for Fig. 1.

where ‖ · · · ‖1 means the trace norm of the matrix
(sum of negative eigenvalues), and ρTA is a partially
transposed density matrix. Such a formula is uni-
versal for all density matrices, and we applied it to
calculate the time evolution of the negativity of the
states described in (2).

Next, we used the formula from [6] to calculate
the negativity for projections ρ̃(t), namely,

N(ρ̃(t)) = |b1|+ 2|b2|. (6)
The time evolution of both negativities, that is,
N(ρ(t)) and N(ρ̃(t)), is illustrated in Fig. 3. The
analyzed period is large enough to observe a peri-
odical behavior in the amount of entanglement gen-
eration. Initially starting from zero, the negativity
N(ρ(t)) quite fast breaks the limit of 0.3 and con-
verges to its maximum around 0.55.

The same type of behavior can be observed
for N(ρ̃(t)). What is noticeable, the negativity of
the projected states is always lower than the actual
negativity of ρ. It is in line with the statement that
projections cannot increase the degree of entangle-
ment. Thus, the projections always give a lower
bound of the entanglement properties. In this sce-
nario, we can see that N(ρ̃(t)) follows quite accu-
rately the periodical change of N(ρ(t)). The mean
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Fig. 3. Time evolution of N (ρ),N (ρ̃) and V (ρ).
Volume of violation was normalized. The values of
parameters are the same as for Figs. 1 and 2.

value of the difference N (ρ(t))−N(ρ̃(t)) is 0.1218,
which is around 25% of the mean value of N(ρ(t)).
It is because the ICPS state family, although simple
and symmetric, is quite wide. On the other hand,
the system described by (2) is quite simple and thus
close to the ICPS state.

Finally, we use the recently introduced measure
of nonlocality, namely, the volume of violation [4],
to calculate the nonlocality of the projected states
ρ̃(t). This measure is defined as

V (ρ, I) =

∫
Γρ,I

dnx, (7)

where dnx = dx1 . . . dxn, and Γρ,I ⊂ X is the
subset of all possible experimental configurations
that lead to the violation of a given Bell-type
inequality I.

The idea of this measure is to take into account
how often a given Bell-type inequality is violated
in a given experimental scenario. This is different
from the usual approach when we take into account
how much a given inequality has been violated. We
use then CGLMP inequality [12] and the set of local
observables M1 (more details in [13]). The normal-
ized evolution of V with respect to time has been
presented in Fig. 3 together with entanglement mea-
sures. We can observe the same periodicity as in the
case of N(ρ(t)) and N(ρ̃(t)). The evolution of V is
more polarized in the sense that there is a longer
time where there is no nonlocality detected. This
is contrary to entanglement which, although often
small, is detected almost all the time.

4. Conclusion

In the present paper, the model of two nonlin-
ear Kerr oscillators mutually coupled by parametric
pumping was considered. We have used this model
to present the application of two main concepts.
First, we projected the time evolution of the density
matrix of our model onto the family of ICPS states
using the projection operator P. For projected and

normal (before projection) states, we have calcu-
lated the amount of generated entanglement using
negativity. The goal was to compare those two val-
ues with each other to see how much accuracy, in
that specific scenario, we are losing when project-
ing states. Next, we used the volume of violation
to calculate the amount of nonlocality in a different
than usual approach. We compared those results
with entanglement. The key idea was to present
the possibilities of those two methods: projection P
and nonlocality V on a simple model and analyze
how it works.

In more complicated scenarios, when the density
matrix of the quantum system could be much less
sparse, those methods could give a grasp idea about
entanglement and nonlocality properties, which
lower the computational cost of using projection
states.
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