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Heat conduction is an important problem in additive manufacturing, which is the main source of interest
for periodic surface structures. The high energy flux, which is required for additive manufacturing to
work properly, results in large temperature gradients, which can affect the quality of an obtained part
in such properties like porosity or residual stresses. In this paper, we present results of heat conduction
calculations in domains of complex geometric shapes expressed by a mathematical description. Such
shapes are called periodic surface structures and a well known example of this type of structure is the
gyroid, while the Neovius surface is another example. The periodic surface structures can be described
by a number of factors, like the thickness or a number of cells, which have impact on their behavior
in heat conduction problems. We developed a software that allows for automatic generations of finite
element meshes for the Neovius surface according to a given set of parameters. Those meshes are used
as an input for heat conduction simulations, whose results are then the base for the analysis of the
influence of geometric factors on temperature distribution.
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1. Introduction

Additive manufacturing is a new technology for
the production of elements that was established
in the second half of the 20th century. Since it
was a new technology, its use was initially limited.
In addition to difficulties related to the manufactur-
ing process itself, the lack of the properly adapted
design tools and methods also posed a problem.
An additional issue was the fact that due to a com-
pletely different process of creating an element,
element designs — previously considered difficult
to make — have now become easy to manufac-
ture [1]. In this situation, structures based on pe-
riodic structures have been used. An example of
such a structure is the Neovius surface [2]. The use
of such structures in the design of elements offers
such advantages as reducing the cost of the mate-
rial used, a direct acceleration of the production
time of the element, reduction of the weight of the
manufactured element, and thus greater flexibility
in the design of elements. It should be emphasized
that making elements containing shapes of periodic
structures without the use of additive manufactur-
ing would be impossible due to a very complicated
shape of such structures [3].

The Neovius surface is an example of a periodic
surface with complex geometry. Due to its shape
containing smooth rib connections, it requires less
material to be produced, while maintaining good
technical properties [4]. In addition, a large amount

of free space allows easy removal of the powder that
remains in the element during additive manufactur-
ing. This makes the Neovius structure an interest-
ing choice for elements produced by additive man-
ufacturing. In recent years, much work has been
devoted to investigate similar structures, like the
gyroid [5, 6].

2. Geometry description

An important aspect of the 3D objects descrip-
tion is the choice of their representation. Depending
on the purpose, there is, for example, a description
with the use of only a surface or a full representation
of the volume that facilitate the Boolean operations.

In the case of a surface description, it is possible
to come across such forms of description as: explicit,
parametric, or implicit. Periodic surfaces are most
naturally represented by an implicit formula.

Implicit surfaces are defined as the set of points
satisfying the equation:

f (x, y, z) = 0, (1)
where x, y, z are the spatial coordinates.

In the case of the Neovius surface [7], named af-
ter Finnish mathematician Edvard Rudolf Neovius,
(1) takes the form:

3
(
cos (x) + cos (y) + cos (z)

)
+4 cos (x) cos (y) cos (z) = 0. (2)
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TABLE I

Parameters used for generating different variants of the Neovius structure, together with the value of the Neumann
boundary condition.

Name
Relative
thickness

Volume
[m3]

Side area
[m2]

Heat flux
[W/m2]

cube – 6.4× 10−5 16× 10−4 6250
Neovius — 2 cells 0.1 1.113× 10−5 2.188× 10−4 45694
Neovius — 2 cells 0.15 1.678× 10−5 3.578× 10−4 27950
Neovius — 2 cells 0.2 2.232× 10−5 5.591× 10−4 17882
Neovius — 4 cells 0.1 1.117× 10−5 2.027× 10−4 49334
Neovius — 4 cells 0.15 1.686× 10−5 3.419× 10−4 29251
Neovius — 4 cells 0.2 2.244× 10−5 5.532× 10−4 12170

In the case of using a periodic surface in addi-
tive manufacturing, it is more practical to give (2)
a form:

3
(
cos (x) + cos (y) + cos (z)

)
+4 cos (x) cos (y) cos (z) = δ, (3)

where δ specifies the thickness of the structure.
Now, (3) prepared in this way has a convenient

form for the preparation of finite element meshes,
necessary for numerical calculations. Finite element
meshes were generated directly for the given geom-
etry (cube) filled with the Neovius surface with the
use of the CGAL library. The CGAL library is of-
ten used in places where computational geometry
algorithms are necessary, such as computer-aided
design, medical imaging, computer graphics, and
robotics [6].

3. Mathematical description
of simulating process

The heat flow model is based on the non-
stationary diffusion equation:

ρc
∂T

∂t
− k∇2T = 0, (4)

where ρ is the density, c is the specific heat capac-
ity, k is the thermal conductivity, t is time, and T is
the temperature.

The above result accomplishes the initial condi-
tion

T = T0 (5)
in the form of a homogeneous temperature field with
a prescribed value and also the Neumann boundary
condition (type II), i.e.,
−k∇T = q, (6)

where q is the value of the heat flux density. The
Neumann boundary condition, in fact, determines
the value of the heat flux flowing through the se-
lected surface.

Now, (4) is solved numerically with the use of
the finite element method, where the necessary time
integration is performed using the backward Euler
scheme.

4. Problem setup and simulations results

The presented study deals with a problem of
heat conduction in domains of a cube and the
Neovius periodic structure. Both the cube and
Neovius structure have side length of 0.04 m.
Physical properties that were used in simula-
tions are as follows: heat transfer coefficient
k = 260 W/(mK), density ρ = 2800 kg/m3 and
specific heat c = 1000 J/(kgK). Those physical
properties are close to physical properties of alu-
minum alloys that are often used in the additive
manufacturing industry.

A boundary condition of the heat flux was always
prescribed on only one side of the region. The exact
values of the heat flux are given in Table I, together
with other parameters of different geometry cases.
The reason for such a variance of the heat flux den-
sity was a variable value of the side for different
variants of the Neovius structure. This way, it was
possible to make sure that in all simulations the
amount of energy that flows into the region is the
same and equal to 10 W.

All other sides were left without additional
boundary conditions, so they were effectively un-
der perfect insulation. The initial temperature for

Fig. 1. Temperature field in a full cube after 100 s.

595



R. Dyja et al.

Fig. 2. Temperature field in Neovius structures af-
ter 100 s for the Neovius structure with 2 cells. Rel-
ative thickness δ values are equal to (a) 0.1, (b) 0.15,
(c) 0.2.

all cases was T0 = 300 K. The presented results
are taken in time moment of t = 100 s, when the
temperature was not changing rapidly. Achieving
a fully steady state was not possible for this set of
boundary conditions.

Figures 1–3 show temperature profiles for the
cube, the Neovius structure with 2 cells and the
Neovius structure with 4 cells, respectively.

The Neovius meshes have much more finite ele-
ments than the cube since it was necessary to use
ones which are finer to accurately recreate all details
of the geometry.

In general temperature profiles in Figs. 2 and 3 re-
semble temperature profile of the full cube in Fig. 1.
Different values of maximum temperature for dif-
ferent cases are mostly due to different values
of volume which directly affects heat capacity.

Fig. 3. Temperature field in Neovius structures af-
ter 100 s for the Neovius structure with 4 cells. Rel-
ative thickness δ values are equal to (a) 0.1, (b) 0.15,
(c) 0.2.

It should be noted that Neovius structures with
a different number of cells, but with the same value
of relative thickness, have a very similar maximum
temperature.

5. Conclusions

The value of the heat flux density in the Neumann
boundary condition was scaled to accommodate for
a different single side area of Neovius structures
generated with a different set of parameters. In gen-
eral, structures with lower volume (heat capacity)
will heat to higher values of temperature. However,
the comparison of results shows that Neovius sur-
faces with a smaller number of cells heat up to lower
values of temperature, even when the volume and
side area were comparable.
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