
ACTA PHYSICA POLONICA A No. 5 Vol. 139 (2021)

Proceedings of the Online Conference “Applications of Physics in Mechanical and Material Engineering”

Influence of On-Site Coulomb Interaction
on Parameters of Superconducting
State in Two-Dimensional Lattices

M.M. Adamczyka,∗, K.A. Kroka,
K.P. Kosk-Jonieca and R. Szczęśniaka,b

aDepartment of Theoretical Physics, Jan Długosz University in Częstochowa,
al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
bInstitute of Physics, Częstochowa University of Technology,
al. Armii Krajowej 19, 42-200 Czȩstochowa, Poland
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The study examined the effect of electron correlations characterized by the on-site Coulomb integral
(U) on the parameters of the superconducting state in two-dimensional model lattices: square and
triangular. In the electronic dispersion relation, we included the U parameter using the Zubarev-type
thermodynamic Green functions formalism. We determined the Eliashberg function (α2F (ω)) using
standard analytical formulas. In particular, we examined the course of the electron density of state
function (ρ(ε)) and α2F (ω) depending on U . Having the explicit Eliashberg functions, derived for
specific values of the U parameter, we analyzed the influence of on-site electron correlations on the
parameters of the superconducting state: the electron-phonon coupling constant (λ) and critical tem-
perature (Tc). We obtained completely different results between the two systems under consideration:
in a square lattice, for the increasing Coulomb repulsion force, the superconducting state disappears.
In a triangular lattice, there is a range of U values for which the superconducting state is amplified.
This is due to the decreasing (increasing) density of states at the Fermi level with the increase of the
U parameter for a square (triangular) lattice.
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1. Introduction

The influence of electron correlations on the su-
perconducting state has not yet been thoroughly
investigated in the literature. The reason for this
is the extreme difficulty of considering the repulsive
electron force in the superconducting state theory.
Although the derivation of the equations describ-
ing the phonon-induced superconducting state to-
gether with the on-site electron interaction is com-
plicated but feasible, solving these equations in
a self-consistent manner is not easy.

Therefore, in the superconducting state theory
(in the Eliashberg formalism) [1, 2], the depair-
ing electron correlations are parametrically mod-
eled by introducing the Coulomb pseudopotential
(µ?) [3–5]. The Coulomb parameter in the ana-
lyzed approach plays the role of a fitting parame-
ter rather than a real quantity determining the ac-
tual Coulomb repulsion, which can be modeled with
an on-site Hubbard integral (U). This fact is related
to the complicated definition of µ?, which includes
parameters such as: U , the density of state at the
Fermi level (ρ(0)), the characteristic electron (ωe)

and the phononic (ωph) frequency. Additionally,
in the quantitative Eliashberg theory [1, 2], it en-
ters the equation for the order parameter with
the cutoff frequency ωcut, the value of which is
very difficult to determine [6]. Accordingly, we
are able to describe correctly phonon-induced su-
perconductivity without electron correlations, but
still we have little understanding of the signifi-
cance and effect electronelectron interactions on the
superconducting state.

The Eliashberg formalism has two input param-
eters: the Eliashberg function (α2F (ω)), which in
its standard form models the electron-phonon in-
teraction [7], and µ?. The aim of the study is to
derive the Eliashberg function for the model sys-
tems under consideration, the courses of which also
take into account the Coulomb repulsion force in
an effective manner. This will allow for the elimi-
nation of the Coulomb pseudopotential as an input
parameter to the model and its complicated defini-
tion. The results of this work can be used as an ex-
ample of modeling depairing electron correlations
in the Eliashberg formalism, without using the
Coulomb pseudopotential. Besides, having explicit
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data of Eliashberg functions that take into ac-
count the on-side electron interaction, one can eas-
ily, in an analytical way, estimate the basic param-
eters of the superconducting state, such as: the
electron-phonon coupling constant (λ) and the crit-
ical temperature Tc.

2. Description of results

The study of two-dimensional model crystal lat-
tices in this context seems very interesting due to
the van Hove singularity states occurring in the
electron density. The existence of peaks near the
Fermi level (ρ(0)) (see functions presented in Fig. 1
with solid black lines) may have a significant impact
on the analyzed parameters of the superconducting
state. In the first step of our analysis, it was neces-
sary to determine the electronic dispersion relation
for the two-dimensional lattices considered in the
work. We used the tight binding method [8], ob-
taining for a square lattice (SQ):

εk = −2t
[
cos(kx) + cos(ky)

]
+4t′ cos(kx) cos(ky), (1)

where t is the electron jump energy between the
nearest atoms in the lattice and t′ is the energy of
the jump to the next nearest atoms. In the study, all
results were given in the unit of the jump integral:
t = 1 (t′ = 0.1 t). For a triangular lattice (TR), the
dispersion relation has the form

εk = −2t
[
cos(kx) + 2 cos

(
1
2kx
)
cos
(√

3
2 ky

)]
.

(2)
However, the given functions do not take into ac-
count depairing electron correlations. To do this, we
use the formalism of thermodynamic Green’s func-
tions of the Zubarev type [9] taking into account
the Hamiltonian [10]:

H =
∑
kσ

εkc
†
kσckσ +

U

2

∑
kk′l

c†k+l↑ck↑c
†
k′↓ck′+l↓,

(3)
where ckσ (c†kσ) are the annihilation (creation) op-
erators of the electronic state with momentum k
and spin σ ∈ {↑, ↓}. Simple calculations led us to
an effective dispersion relation with electron corre-
lations taken, i.e.,

εeff
k = εk −

U

2
〈n〉, (4)

where 〈n〉 = 2
N

∑
k〈nk↓〉 and 〈nk↓〉 = 〈c†k↓ck↓〉.

We assumed in the calculations that on average
we have one electron per lattice node (〈n〉 = 1),
and therefore the chemical potential is zero (µ = 0).
Given the explicit electron dispersion relation εeff

k ,
we can determine the electron density function of
states, which is defined by [11]

ρ(ε) =
1

N

∑
k

δ(ε− εeff
k ), (5)

where the δ(x) symbol represents the Dirac distri-
bution: δ(x) = lima→0

1
π

a
a2+x2 [12].

Fig. 1. Electronic density functions of states ρ(ε)
depending on U for a square (a) and a triangular
lattice (b). The dashed black line represents the
Fermi level.

Fig. 2. Eliashberg functions α2F (ω) depending on
U for a square (a) and a triangular lattice (b).

For the electron density of states explicitly de-
pendent on U , it is possible to check what influ-
ence the electron correlations have on its course.
We have shown the results in Fig. 1 for the model
systems under consideration. It can be seen that as
the U parameter increases, the electron density of
state function shifts towards negative energy values
in both cases.

In the next stage of the research, we deter-
mined the isotropic Eliashberg function given as fol-
lows [13]:

α2F (ω) = ρ(0)
∑
q

g2
qδ(ω − ωq). (6)

The symbol gq represents the electron–phonon cou-
pling function defined by gq = g0|q|

√
1
ωq

, where
g0 is the constant that determines the strength
of this interaction. In this study, we assumed
g0 = {0.031, 0.03} × t3/2, so that the coupling be-
tween electrons and phonons was relatively strong
for the SQ and TR model (λ = {2, 1.27}), respec-
tively. The phonon dispersion relation ωq was ap-
proximated by the harmonic taking into account the
vibrations of the nearest atoms and the frequency
of the phonon oscillator ω0 = {0.15, 0.2}×t, respec-
tively for SQ and TR.

We have presented the Eliashberg functions
in Fig. 2. It can be seen that with the increasing
strength of depairing electron correlations, the su-
perconducting state expires in the square lattice by
decreasing values of α2F (ω). In a triangular lattice,
the Eliashberg function assumes higher and higher
values with the increase of U . This strengthens the
superconducting state for this system. This ampli-
fication goes up to a certain value of U , which is
related to the density of states at the Fermi level
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Fig. 3. (a) The density of states value at the Fermi
level ρ(0), (b) electron-phonon coupling constant λ
and (c) critical temperature Tc as functions of U
for a square (green lines) and a triangular lattice
(navy blue lines). The dashed lines indicate the
indeterminacy of the results due to the existence of
the van Hove singularity in the given range of the
U parameter values.

(see Fig. 3a). The superconducting state weakens
in the TR model as ρ(0) begins to decline. The
value of U , for which the superconducting state dis-
appears in both cases, corresponds to the value of
the Coulomb integral, when the electron density of
state at the Fermi level takes zero values.

The consequence of shifting ρ(ε) towards negative
energy values, with an increase in the U parameter,
is a decreasing value of the density of states at the
Fermi level (ρ(0)) in a square lattice and also its
increase for a triangular lattice (see later Fig. 3a).
This is due to the fact that the van Hove singular-
ity in the SQ model moves away from the Fermi
level with the increase of U , and for the TR model
the situation is completely opposite. Namely, the
electron density of states peak is getting closer and
closer to the Fermi level. This has its further con-
sequences — the results for the triangular lattice
become undefined (e.g., the dashed lines in Fig. 3)
in the vicinity of the van Hove singularity.

Given the explicit Eliashberg function, we can
easily calculate the parameters of the superconduct-
ing state. We calculated the electron–phonon cou-
pling constant from

λ = 2

∞∫
0

dω
α2F (ω)

ω
. (7)

The critical temperature can be estimated with
good accuracy from the Allen–Dynes formula [14]

kBTc =
ωln

1.2
f1f2 exp

(
−1.04(1 + λ)

λ

)
, (8)

where kB is the Boltzmann constant. The logarith-
mic phonon frequency is determined by

ωln = exp

(
2

λ

∫ ∞
0

dω
α2F (ω)

ω
ln(ω)

)
. (9)

The symbols f1 and f2 define the expressions:

f1 =
(
1 + (λ/2.46)

3
2

) 1
3

(10)

and

f2 = 1 +

(√
ω2

ωln
− 1

)
λ2

λ2 + Λ2
1

, (11)

where Λ1 = 1.82(
√
ω2/ωln). The second moment of

the normalized weighting function is given by

√
ω2 =

√
2

λ

∫ ∞
0

dω α2F (ω)ω. (12)

The form of the Eliashberg function is influenced by
the value ρ(0), which can be seen in (6), so we also
analyzed the electron density of state at the Fermi
level as a function of U .

Let us summarize the results for a square lattice
(green lines and symbols) and a triangular lattice
(navy blue lines and symbols) in Fig. 3. It can be
easily seen that the superconducting state param-
eters follow a similar course to the electron state
density at the Fermi level, which proves that mainly
the ρ(0) values have a decisive influence on the su-
perconducting state results.

We obtained critical values of the on-site Hub-
bard integral in which the superconducting state
disappears: Uc = 7.61t for a SQ lattice and
Uc = 5.42 t for a TR lattice. The weakening nature
of the superconducting state can also be observed,
that is, the decreasing λ and Tc for the entire range
of U values in the SQ model. Moreover, Fig. 3
also shows that the maximum value of λ = 2.1 and
kBTc = 0.029t in a square lattice occurs for U = 0,
from which it can be concluded that the increas-
ing force of the repulsion of the electrons destroys
the superconducting state in this system. When
the value of the jump integral is t = 250 meV, the
maximum critical temperature equals Tc = 84.5 K.
In the TR model, we can see both the range U
for which the superconducting state will be am-
plified U = (0.01, 3) t and where it disappears
U = (4.5, 5.42) t. The increasing Coulomb in-
teraction strengthens the superconducting state in
the low ranges of the U ∈ (0.01, 3) t parameter.
Further, it causes that the electron–phonon cou-
pling constant increase to 3.85. The maximum
value of λ that was achieved in the calculations for
the TR model as high as 5.22 was for U = 4.5 t.
This has its consequences — the maximum criti-
cal temperature value is Tc = {202.9, 257.2} K for
U ∈ {3, 4.5}t and assuming t = 250 meV. Typ-
ically, the electron hopping force must be strong
enough to allow the electron to break away from
the atomic nucleus and jump to an adjacent lattice
node. Therefore, the value of t also depends on the
lattice shape.

In the paper, we assume that the distance be-
tween the atoms of the lattice is the same in both
cases (the lattice constant is equal to one). Here,
the value of t = 250 meV is an example value cho-
sen to illustrate the real values of the parameters
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of the superconducting state in the models under
consideration. This value is used in modeling of
copper-oxygen planes in cuprates. In these planes,
copper and oxygen atoms are arranged in the shape
of a square lattice.

3. Conclusions

We analyzed the influence of depairing electron
correlations on ρ(ε), which we determined on the
basis of the effective dispersion relation taking into
account the on-site Coulomb integral U , for elec-
trons of a square and triangular lattice. This made
it possible to calculate α2F (ω) for specific values
of the Coulomb repulsion force and on its basis
to determine the basic parameters of the supercon-
ducting state. As a consequence, we found that in
the SQ model, the superconducting state disappears
throughout the course of U , assuming the maximum
λ = 2.1 and Tc = 84.5 K for U = 0 and disappears
completely for Uc = 7.61t. In a triangular lattice,
the superconducting state is amplified with increas-
ing Coulomb interaction, reaching λ = 3.85 and
Tc = 202.9 K for U = 3t. Furthermore, the super-
conducting state of the triangular system tends to
decrease in the range of U ∈ (4.5.5.42)t, assuming
the maximum value of λ = 5.22 and Tc = 257.2 K
for U = 4.5t.
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