
ACTA PHYSICA POLONICA A No. 5 Vol. 139 (2021)

Proceedings of the Online Conference “Applications of Physics in Mechanical and Material Engineering”

Buckling Control of Piezolaminated
Beams for Compliant Bistable Mechanisms

K. Kuliński∗ and J. Przybylski

Częstochowa University of Technology, 42-201 Częstochowa, Poland

Doi: 10.12693/APhysPolA.139.574 ∗e-mail: krzysztof.kulinski@pcz.pl

This paper is concerned with the effect of axial forces on buckling control of beams with adhesively
bonded piezoelectric layers. The type of the system support makes it possible to apply it in compliant
mechanisms for precision engineering. In the work, the influence of piezoelectric actuation on buckling
behavior of non-uniform Euler–Bernoulli beams with ends restrained against longitudinal displacements
is analyzed in detail. It is shown that the in-plane stretching or compressing being a result of the piezo-
electric residual stresses may, dependently on the sign of the applied voltage, either counteract or evoke
the buckling of the structure. A change in the buckling mode shape for the first critical buckling load
with increasing stiffness of elastic foundation is observed.
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1. Introduction

Researches concerning the buckling behavior of
various types of beams, columns and plates have at-
tracted interest from many academic and R&D cen-
ters since 1751 when Leonard Euler proposed a sin-
gle formula for predicting compressive force causing
this type of failure. The overall buckling in struc-
tural mechanics results in a sudden transition from
one type of deformation shape, observed under pure
compression, to the second bent one connected with
eccentric compression. Due to an increasing redis-
tribution of internal forces, the buckling leads to
instability and collapse of the whole structure or its
particular member.

Structural stability as well as dynamic response of
slender systems may be enhanced by using, among
others, piezoelectric materials and shape memory
alloys which have active and controllable mechan-
ical properties. Piezoceramics belong to a special
group of materials which convert mechanical energy
into electrical energy, or vice versa. Theoretical, nu-
merical and experimental studies of the shape con-
trol of slender cantilever beams with piezoelectric
patches being under the electric field application
were conducted by Schoeftner et al. [1]. Zehetner
and Irschik [2] stated that the effect of piezoelectric
force induction on the static system response is the
most effective for beams with ends fixed in place to
prevent longitudinal displacements. The effect of
a piezoceramic rod actuation mounted with differ-
ent offset on the shape control of a slender cantilever
column was thoroughly discussed in [3].

In this paper, a passive control by using piezo-
electric actuators of the critical buckling capacity
of a non-uniform Euler–Bernoulli beam resting on
Winkler foundation is discussed. The beam, having
one end pinned and the second one guided, is re-
strained against longitudinal displacements. The
inhomogeneity of an analyzed system is a result
of symmetrical bonding of a pair of piezoelectric
patches to the top and bottom surfaces of the beam.
The proposed system due to its unique feature, sim-
ilarly as a fixed-guided beam studied in [4], may be
used as a flexible segment in compliant mechanisms
such as bistable mechanisms.

The electric field induction, dependently on the
electric field vector sense, generates the in-plane
tension or compression in the beam. The main pur-
pose of this study is to investigate how the elec-
tric field applied to the piezo actuators may reduce
the compressive load to a subcritical level that will
eliminate the buckling deformation of the analyzed
system.

2. Problem formulation

A scheme of an investigated beam with a pair
of piezoceramic patches located symmetrically be-
tween the beam’s ends and resting on Winkler
elastic foundation of stiffness modulus k is shown
in Fig. 1. The system is subjected to a prescribed
end displacement δ which results in force P whose
value may be determined from Hooke’s law. The
piezosegment is under uniform electric field E.
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Fig. 1. Scheme of a three-segmented beam with
piezo patches located symmetrically between the
beam’s ends.

The problem is formulated based upon the fol-
lowing assumptions:

• the slenderness of the analyzed system allows
to apply the Euler–Bernoulli beam theory,

• the beam is made of a homogeneous linearly
elastic isotropic material and the piezoceramic
material is linearly elastic and transversely
isotropic,

• the system is free of physical and geometrical
imperfections,

• segments without piezo elements are identical
in terms of mechanical and physical proper-
ties,

• the width of piezo patches (bp = b) is equal to
that of the host beam (bb = b) and the piezo
layer thickness is considered as 1/6 of the host
beam width,

• the adhesive layer between the piezo elements
and the host beam is treated as negligibly
small,

• delamination of the patches is neglected,
• a uniform and constant electric field is applied
to the actuators.

3. Mathematical solution

A variational formulation of the problem is based
on the linear constitutive equations characterizing
piezoelectric material properties:

σx = Epεx − V

hp
e31, (1)

Dz = e31εx +
V

hp
ξ33, (2)

where Ep is the piezoelectric material Young’s mod-
ulus [N/m2], εx is the strain along the consid-
ered beam, e31 is the piezoelectric constant [C/m2],
V denotes the controlling voltage [V], hp is
the piezoelectric element thickness [m], Dz is
the electric displacement [C/m2] and ξ33 is the elec-
tric permittivity factor [F/m].

The problem of residual forces generation in an n-
segmented beam with (n − 2)/2 pairs of piezo-
ceramic actuators, by the assumption that the
beam ends eliminate longitudinal displacements,
was thoroughly discussed in [5]. On the basis of
that study, the residual force for a three-segmented
system may be expressed as:

Fr = ±2be31ηV, (3)
where its positive or negative value depends on the
electric field direction and η stands for the relation
between the beam and the piezosegment axial stiff-
ness and their lengths:

η =
EbAbL2

EbAbL2 + (EbAb + EpAp) (L1 + L3)
, (4)

where E is the material Young’s modulus, “p” and
“b” are the subscripts denoting the piezo element
and the host beam, respectively, A is the element
cross-section area, and Li is the length of the par-
ticular segment (i = 1, 2, 3).

In order to make the problem more general, the
analysis is performed with the use of dimensionless
quantities. According to that, the boundary value
problem for the three-segmented beam resting on
elastic foundation with residual force term (f2r ) is
expressed by the following differential equations:

d4wi (ξi)

dξ4i
+ ϕi

(
p2u ± f2r

) d2wi (ξi)

dξ2i

+ϕiβwi (ξi) = 0, (5)
for i = 1, 2, 3 and for two sets of boundary condi-
tions:

• at the ends of pinned-guided beam

w1 (0) = wII
1 (0) = wI

3 (l3) = wIII
3 (l3) = 0, (6)

• the continuity conditions describing the equal-
ity of transversal displacements, slopes, bend-
ing moments and shear forces at each segment
interfaces:

wi (li) = wi+1 (0) , wI
i (li) = wI

i+1 (0) ,

(1 + rm)
1
2 ( i

2i+1)
wRN

i (li) =

(1 + rm)
1
2 ( i2i+1) wRN

i+1 (0) , (7)

where i = 1, 2 and RN = II, III denotes the
derivative order.

The dimensionless parameters are obtained
through the following substitutions:

wi (ξi) = Wi (xi) /L, ξi = xi/L,

ϕi = (1 + rm)
− 1

2 ( i2i+1) , li = Li/L,

rm = (EpJp)/(EbJb), f2r = ±v2η,

p2u = PuL
2/(EbJb), β = (kL4)/(EbJb), (8)

whereWi(xi) denotes the transversal displacements
of ith segment, J is the element cross-section mo-
ment of inertia, L stands for the total beam length,
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Pu indicates the axial force resulting from the sup-
port prescribed displacement and k is the elastic
foundation stiffness modulus. The non-dimensional
voltage parameter is defined as:

v =

√
2be31V

EbJb
L. (9)

Now, the general solution of (5) is taken as follows:
wi (ξi) = Ai cosh (γi1ξi) +Bi sinh (γi1ξi)

+Ci cosh (γi2ξi) +Di sinh (γi2ξi) , (10)
for i = 1, 2, 3. Coefficients γi1 and γi2 depend on
the axial force sign which depends on prescribed
support displacement δ resulting in force pu and in-
duced residual force parameter fr:

γi1 =

√√√√√±ϕi (p2u + f2r ) −
√
ϕi

(
(p2u + f2r )

2 − 4β
)

2
,

(11)

γi2 =

√√√√±ϕi (p2u + f2r ) +

√
ϕi (p2u + f2r )

2 − 4ϕiβ

2
.

(12)
By substituting (10) describing the transversal
displacements of particular beam segments (i =
1, 2, 3) into the boundary and continuity conditions,
(6) and (7), the system of twelve homogeneous lin-
ear equations with respect to unknown integration
constants Ai, Bi, Ci and Di is obtained. A non-
trivial solution of this system is attained, when the
determinant of appropriate matrix coefficients is set
to zero. As a result, the critical buckling load can
be determined for known physical and geometrical
parameters of the system as well as the chosen mag-
nitude of the piezoelectric actuation.

4. Numerical results

It has been assumed for the computation pur-
poses that the cross-section dimensions of piezo-
ceramic patches and the beam are fractions of
the beam’s length, hence the width and height
of both components b = B/L = 1/30, the
beam’s height hb = Hb/L = 0.005 and the actua-
tor’s height hp = hb/6. The remaining parameters
applied for calculation are equal: Eb/Ep = 0.840,
and rm = 1.63133. Two elastic foundation parame-
ters are chosen: β = 0 and β = 100. Thus, the
buckling load for the beam without piezo patches
may be compared with that determined in [6]. Two
values of the non-dimensional voltage are adopted:
v±π, with the negative voltage inducing the tensile
residual force and the positive voltage generating
the compressive force, respectively. The influence
of piezoelectric actuation on the system’s critical
force is presented in Fig. 2.

Comparing the courses of curves shown in Fig. 2
one can notice that the longer the piezo patches
length, the higher the influence of piezoelectric

Fig. 2. Two first critical buckling loads (pc) versus
piezo-segment length for different non-dimensional
elastic foundation parameters.

Fig. 3. Modification of buckling modes with in-
creasing values of the elastic foundation modulus
for a pinned-guided beam. Remaining parameters:
f = 0, l2 = 0.

actuation on the critical loads. For the beam with-
out distributed support resulting from the elastic
foundation (β = 0), when the piezosegment length
is greater than 0.42, the positive voltage applica-
tion of the value v = π leads to the buckling in-
stability. The tensile force induction by the piezo
actuation in any studied configurations allows one
to increase the critical force, however, the higher the
elastic foundation stiffness, the lower the influence
of residual force on the static response. For β = 0
and l2 = 1.00, the induction of the tensile residual
force by v = π gives the percentage increase in the
critical load equal to ∆pc = 58.75%, whereas for
the beam resting on elastic foundation (β = 100)
and the same piezosegment length (l2 = 1.00), one
obtains the increase ∆pc = 5.11%, respectively.

With an increase of the foundation modulus pa-
rameter, a change in the buckling modes is detected,
what was revealed by Hetenyi [7] for a pinned–
pinned beam. In the analyzed system, regardless
of the piezosegment length and the actuation level,
for β = 0, the first buckling mode without a node
is observed, whereas for β = 100, a one-node shape
appears. The change of buckling mode shapes for
the growing values of elastic foundation stiffness β
for a simple pinned/guided supported beam (l2 = 0)
is shown in Fig. 3.
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The numerical results prove that for β = 54.792,
one obtains a change in a buckling mode shape for
the first critical load. In the case of the configu-
rations with actuators, the piezo elements increase
the beam overall bending stiffness, thus a change
between modes appears for higher values of the β
parameter.

5. Conclusions

The static response enhancement via piezoelec-
tric actuation of a slender pinned-guided system
resting on a Winkler elastic foundation is studied.
Regardless of the elastic foundation parameter, the
induction of the tensile axial residual force leads to
an increase in the critical buckling force. Moreover,
depending on the foundation stiffness, a change in
the buckling mode shapes for the first critical load
is demonstrated.
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