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Defects of structural elements may have a significant impact on the dynamic stability of the systems in
which these elements are used. A Bernoulli–Euler beam was taken as an example of a structural element
with defects. The study analyzed the influence of the asymmetric distribution of defects modeled with
rotating springs. The influence of the depth of damage on the dynamic stability of the beam was also
investigated. The method of mode summation was used to solve the problem of dynamic stability.
After using the orthogonality condition of the eigenfunctions, the equations of motion of the studied
system were presented in the form of the Mathieu equations. The obtained coefficients a and b of the
Mathieu equations allow to determine stable and unstable solutions to the equation on the Strutt card.
On this basis, it is possible to determine the dynamic stability of the tested beam for specific physical
and geometric parameters of the system.
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1. Introduction

A crack initiation and propagation in the material
is most often the result of variable loads. Cracks
reduce the stiffness of components and are the most
common cause of structural defects. This type of
damage to a structural element is a serious threat to
the structure or proper functioning of the machine.
Very often, these structural elements are beams.

During the last few decades, a great deal of re-
search work was carried out on beams and beam
structures with cracks. The use of the vibration
technique to detect the location and size of a fa-
tigue crack in structures is presented in [1]. Both
the depth and location of cracks are compared with
data obtained from FEM models. The effect of
a transverse open crack on free vibrations of a sim-
ply supported Bernoulli–Euler beam is presented
in [2]. An influence of the parameters of the loading
heads on the stability and free vibrations as well as
on loading capacity of a cracked column subjected
to a specific load is studied in [3]. Furthermore,
in [4], flexural vibrations measurements of a can-
tilever beam with a rectangular cross-section that
has a transverse surface crack extending uniformly
along the width of the beam are conducted. An-
alytical results were used to relate the measured
vibration modes to the crack location and depth.
In [5], the description of a detection method of
a crack presence on the surface of a beam-type

structural element using natural frequency is pre-
sented. The vibration tests of a beam structure
with damping as an L-type frame with cracks are
presented in [6]. In [7], in turn, the analytical trans-
fer matrix method is performed to solve direct and
inverse problems of simply supported beams with
an open crack.

A crack in a structural element, which is a beam,
affects the vibrations of the structure, and thus its
dynamic stability. There are many studies in the
literature on the dynamic stability of beams. In [8],
the dynamic stability of an elastic beam was an-
alyzed. The analysis of the dynamic stability of
beams with step changes in the cross-section under
moving loads was carried out in [9]. The stabil-
ity problem associated with a Bernoulli–Euler beam
made of an arbitrary linear viscoelastic material
was formulated in [10]. The three-parameter and
the Kelvin–Voigt models have been analyzed in the
presence of constant and periodic loads. In [11], the
effect of a crack on the dynamic stability of a free–
free Timoshenko beam — when it is subjected to
a constant or pulsating follower force — was inves-
tigated. Further, in [12], the parametric instability
of the electromagnetically excited beam was ana-
lyzed. In [13, 14], the problem of a simply sup-
ported beam and a cantilever beam loaded axially
with harmonic force — showing the destabilizing ef-
fect of additional elements attached to the beams —
was analyzed. Analytical and experimental studies
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on the influence of the mass installed at the end of
a beam on its dynamic stability were carried out
in [15]. Moreover, in [16], the dynamic stability of
a beam supported elastically at its ends was ana-
lyzed. The parametric vibrations of a beam loaded
with a concentrated mass, showing the influence of
the beam weight and inertia of the rotating mass
on the beam vibrations were investigated in [17].

In this paper, a simply supported beam with
cracks, loaded with a longitudinal force in the form
P (t) = P0 + S cos(νt), is considered. Cracks mod-
eled with rotary springs are located on the beam
anywhere between the supports. The tested beam
was treated as a Bernoulli–Euler beam. The prob-
lem of dynamic stability was solved by the mode
summation method. The applied research proce-
dure allowed to describe the dynamics of the tested
system using the Mathieu equation. The influence
of a crack depth and its location on the beam on the
value of the b coefficient in the Mathieu equation for
the constant value of the coefficient is investigated.

2. Mathematical model of beam vibration

Figure 1 shows the analyzed beam with cracks,
the properties of which are modeled by springs.

For the ith part of the beam, the vibration equa-
tion takes the form

EiJi
∂4win (xi, t)

∂x4i
+ P (t)

∂2win (xi, t)

∂x2i

+ρiAi
∂2win (xi, t)

∂t2
= 0, (1)

where Ai is the cross–section area, ρi is the density,
i = 1, 2, 3 is the ith part of the beam. The explicit
form of P (t) = P0 + S cos(νt) involves the forcing
frequency ν.

Position and time variables were separated using
the equation

win(xi, t) = Win (xi) cos(ωnt), (2)
where ωn is the beam’s nth natural frequency.

By inserting (2) into (1) we obtain the time-
independent equation of motion

EiJiW
IV
in (xi) + P0W

II
in (xi)

−ρiAiω
2
nWin (xi) = 0, (3)

on the basis of which the beam’s natural frequencies
were determined. Also, it applies that

W1 (0) = 0, W II
1 (0) = 0, Wi (li) = Wi+1 (0) ,

Cii+1

(
W I

i

(
li
)
−W I

i+1 (0)
)

+ EiJiW
II
i (li) = 0,

EiJiW
II
i (li)− Ei+1Ji+1W

II
i+1 (0) = 0,

EiJiW
III
i (li) + P0W

I
i (li)− Ei+1Ji+1W

III
i+1 (0)

−P0W
I
i+1 (0) = 0,

W3 (l3) = 0, W II
3 (l3) = 0. (4)

The superscript Roman numerals denote the differ-
entiation with respect to x, where i = 1, 2, 3.

Fig. 1. Model of a beam with cracks modeled by
rotational springs.

The solution of (3) can be assumed as
Win (xi) = Di1 cosh (αinxi) +Di2 sinh (αinxi)

+Di3 cos (βinxi) +Di4 sin (βinxi) , (5)
where Dik are the integration constants for
k = 1, . . . 4, and parameters α and β are defined as

α2
in = −λi

2
+

√
λ2i
4

+ Ωin, (6)

β2
in =

λi
2

+

√
λ2i
4

+ Ωin, (7)

where Ω2
in = ω2

nρiAi/(EiJi), λi = P0/(EiJi).
The boundary problem of the tested beam is for-

mulated on the basis of the vibration equation (3)
and boundary conditions (4). Solving it, we obtain
the natural frequencies ωn and the eigenfunctions
Win(xi) of the beam.

3. Dynamic stability of the beam

In order to determine the dynamic stability, the
solution of (1) should be adopted in the form of
a series of eigenfunctions

wi (xi, t) =

∞∑
n=1

Win (xi)Tn (t) , (8)

which consist of unknown time functions Tn (t) and
normalized eigenfunctions of free frequencies of ith
parts of the beam Win (xi). The determined eigen-
functions satisfy the condition

3∑
i=1

ρiAi

li∫
0

dxiWin (xi)Wim (xi) =

{
γ2m for m = n

0 for m 6= n.
(9)
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By inserting (9) into (1), one obtains
∞∑

n=1

[
ρiAiWin(xi)T̈in(t) + EiJiW

IV
in (xi)Tin(t)

+
(
P0 + S cos(νt)

)
W II

in (xi)Tin (t)
]

= 0. (10)

Multiplication by Wim(xi) allows to obtain
∞∑

n=1

[
EiJiW

IV
in (xi)Wim (xi)Tn(t)

+P0W
II
in (xi)Wim (xi)Tn (t)

+S cos(νt)W II
in (xi)Wim (xi)Tn (t)

+ρiAiWin (xi)Wim (xi) T̈n (t)
]

= 0. (11)

Next, when multiplying the equation of motion (3)
by Wim (xi), one gets[

EiJiW
IV
in (xi) + P0W

II
in (xi)

]
Wim (xi) =

ρiAiω
2
nWin (xi)Wim (xi) (12)

and after transformation (12), one gets the form
∞∑

n=1

[
ρiAiω

2
nWin (xi)Wim (xi)Tn (t)

+S cos(νt)W II
in (xi)Wim (xi)Tn (t)

+ρiAiWin (xi)Wim (xi) T̈n (t)
]

= 0. (13)

For the basic parametric resonance, only the first
term of the sum in (13) is taken into account for
further analysis. After its integration, the following
result is obtained

T1 (t)

(
ω2
1ρiAi

l∫
0

dxiW
2
i1 (xi)

+S cos(νt)

l∫
0

dxiW
II
i1 (xi)Wi1 (xi)

)

+T̈1 (t) ρiAi

l∫
0

dxiW
2
i1 (xi) = 0. (14)

The substitution of t for τ = νt transformed (14)
into the Mathieu equation of the form

T̈ (τ) +
(
a+ b cos(τ)

)
T (τ) = 0, (15)

where a = ω2
1/ν

2, T̈ (τ) denotes the second deriva-
tive after τ , and

b =
S

ν2

4∑
i=1

l∫
0

dxiW
II
i1 (xi)Wi1 (xi)

4∑
i=1

ρiAi

l∫
0

dxiW 2
i1 (xi)

. (16)

On the basis of the derived (16) in the form of the
Mathieu equation and its periodic solutions, stable
and unstable regions can be determined (Strutt’s
chart — Fig. 2) [18]. The value of the coefficient a

Fig. 2. Strutt’s chart showing the stable (white)
and unstable (gray) areas for the coefficients a and
b of the Mathieu equation.

of the Mathieu equation is influenced by the natu-
ral frequency of the beam and the frequency of the
exciting force, while the value of the coefficient b is
influenced by the type of the material, beam geome-
try, frequency of the exciting force and the location
of defects.

4. Results and discussion

The study analyzed a l = 3 m long beam with two
defects located at points l1 and l2, respectively. The
material was steel with density 7.86 × 103 kg/m3,
Young’s modulus was 2.1 × 1011 Pa and the cross-
sectional area was 54× 10−3 m2. The h is the per-
centage of the crack depth in relation to the beam
width. The crack depth h is defined as the ratio of
the cross-sectional area of the notch to the cross-
section of the beam. The constant component of
the loading force P and its variable component S
were set at 5% of the critical load.

Figure 3 shows the effect of cracks depth and their
position on the first and second natural frequencies.
As the crack depth increases, the values of both
frequency types decrease. The first eigenfrequency
reaches the minimum for the location of the cracks
at the center of the beam, while the minimum of
the second eigenfrequency occurs when the cracks
are one-fourth the length of the beam from its ends.

Figure 4 presents the analyzed cases on the Strutt
chart. The increase in the frequency of the excit-
ing force, and thus the parameter a of the Mathieu
equation, causes a proportional increase in the co-
efficient b. Despite the low value of the exciting
force of the columns (5% of the critical force value),
the solutions to the equation of motion pass through
unstable areas, and it may cause the destruction of
the system for selected values of the exciting force
frequency.

Figures 5 and 6 show the influence of the crack
depth and crack shift on dynamic stability, re-
spectively, on selected examples. Unstable areas
are marked in dark color, i.e., those for which
the vibration amplitude at a relatively low load
increases to infinity due to parametric resonance,
which may result in the destruction of the system.
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Fig. 3. The first (a) and the second (b) eigenfre-
quency depending on the location of the cracks and
their depth.

Fig. 4. Analyzed cases plotted on the Strutt chart.

Fig. 5. The effect of crack depth on the dynamic
stability of a beam.

In Fig. 5, the crack positions were l1 = 1.5 m and
l2 = 1.65 m. As shown, increasing the crack depth
leads to a non-linear decrease in the dynamic sta-
bility of the analyzed beam. At the same time, as
shown in Fig. 6, shifting the crack from the center
of the beam towards its end increases the dynamic
stability.

Fig. 6. The influence of the l2 crack shift on the
dynamic stability of the beam for l1 = 0.9 m.

5. Conclusions

The paper shows the influence of the crack po-
sition on the first and second natural frequencies.
The closer the defects are to the center of the beam,
the more the value of the first natural frequency
decreases. The minima for the second natural fre-
quency are for the distance of defects from the ends
of the beam in one-fourth of its length. The reduc-
tions of eigenfrequencies are the greater, the greater
the depth of defects.

As part of the work, it was shown that there
are beam parameters for which the phenomenon of
parametric resonance occurs, which may cause its
destruction for a relatively low periodic force excit-
ing the system. The dynamic stability increases for
smaller defect depths and when they are closer to
the beam ends.
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