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The aim of the present paper was to study chaotic behavior in a resistor–inductor diode circuit induced
by frequency modulation. Time dependences of voltage and current showed an extremely chaotic
response of this system. Based on these dependences, the phase space was built. A bifurcation diagram
was constructed and based on it, the Feigenbaum constant was calculated and verified with reliable and
noticeable accuracy.
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1. Introduction

Deterministic chaos is a property of equations
or systems of equations, which is related to ex-
tremely large sensitivity to initial conditions [1].
The simplest example of a chaotic system is a lo-
gistic map. Chaotic behavior is observed in many
electronic circuits. Period doubling or bifurca-
tion is a simple way to chaos [2, 3]. Bifurcations
are caused by changing one or several parameters
of a system. In the case of a logistic map, the
period changes from input 1 to output 2, 4, 8, 16
and so on. Moreover, the change of the period
is realized with a constant step. This constant
value δ is called the Feigenbaum constant [4, 5].
The Feigenbaum diagram is a simple example
of a fractal, which means that it is self-similar.
A similar structure based on dendritic forms was
studied in our previous works [6]. A simple sys-
tem manifesting chaotic behavior is an RLD circuit,
where R is the resistor, L — the inductor and D is
the diode (Fig. 1). The diode performs as a nonlin-
ear element.

Fig. 1. The scheme of the RLD circuit.

The aim of the present work was to simulate
the response of the RLD circuit, construct the
Feigenbaum diagram and calculate the Feigenbaum
constant.

2. Simulation procedure

The simulations were conducted on an RLD cir-
cuit using a PC computer (Processor Intel I7,
32GB RAM) equipped with a Wolfram Mathemat-
ica package. The simulation was based on the fol-
lowing relations:

I(t) =
dq(t)

dt
(1)

and

LI ′(t) +RI(t) +
C2 − C1

2C1C2
|q(t)|

+
C1 + C2

2C1C2
q(t) + Ua = Ud sin

(
2πft

)
, (2)

where I is the current, q is the electric charge, t is
the time, L is the induction of a solenoid, R is the
resistance of a resistor, C1 and C2 are the capacities
of a diode, Ua is the voltage, Ud is the maximum
supply voltage and f is the frequency of a generator.

Implemented in the Mathematica software,
(2) was solved numerically using the Runge–Kutta
algorithm.

The values of each of the parameters are:
L = 0.2 mH, R = 80 Ω, C1 = 0.1 µF, C2 = 60 pF,
Ua = 1.2 V and Ud = 10 V. The parameters of the
diode were taken for real diode IN1221. Impor-
tantly, the entire procedure was conducted in a wide
frequency range.
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3. Results and discussion

The time-dependences of voltage for a series of
frequencies were depicted in Fig. 2. It is clearly
seen that in the beginning, only one period is visible.
An increase of frequency induces the multiplying of
states and the appearance of a chaotic response of
the RLD circuit. The multiplying of the period is
clearly seen for frequencies higher than 100 kHz.

A more detailed analysis was possible by con-
structing a phase space. It was plotted as voltage
dependences of current in specific values of time and
frequencies (Fig. 3). The phase space constructed in
a predictable state has an oval shape. The increase
of frequency causes the appearance of characteris-
tic loops on the oval shape. Further, the increase of
frequency leads to the multiplying of loops, which
indicates chaotic behavior.

In order to visualize the further multiplying of
the period, the Feigenbaum diagram (FD) was con-
structed (Fig. 4). The analysis of the FD revealed
that for frequencies lower than 30 kHz, the circuit
generates some ancient states, which is typical for

Fig. 2. The time dependences of voltage simulated
for different values of frequency for the analyzed
RLD circuit.

Fig. 3. The phase spaces for different values of fre-
quency for the analyzed RLD circuit.

this type of circuits (i.e., such states are also met
in RLC circuits). In the range of 50–100 kHz, one
period is observed. The doubling of the period
was detected for frequencies higher than 130 kHz.
The next doubling of the period was revealed for the
frequency range of 200–220 kHz and then chaotic
behavior appeared.

The increase of frequency to 280 kHz caused
an additional state and the whole system gener-
ated three different states until the next doubling
at 325 kHz. A similar situation is observed at higher
frequencies, when four beginning states were de-
tected. Moreover, it is clearly seen that the am-
plitude of the period decreases with the increase of
frequency. Fitting, used to find a function to the up-
per border of the diagram, revealed an exponential
decrease of the Feigenbaum diagram. Such a be-
havior could be related to the resistance applied in
the studied circuit.

Based on the constructed Feigenbaum diagram,
δ (the Feigenbaum constant) was calculated us-
ing [4]

δ =
xn+1 − xn
xn+2 − xn+1

, (3)

where xn is the value of the changing parameter
with one state and xn+1 or xn+2 are the parame-
ters corresponding to the next bifurcations.
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Fig. 4. The Feigenbaum diagram constructed for
the analyzed RLD circuit.

In the studied case, (3) should be rewritten in the
following way:

δ =
fn+1 − fn
fn+2 − fn+1

, (4)

where fn means the changing frequency until the
first bifurcation, and fn+1, fn+2 are the frequencies
to the next two bifurcations.

The calculated Feigenbaum constant equaled
2.85 ± 0.13 (for the range of frequencies close
to 200 kHz), 3.72±0.12 (for the range of frequencies
close to 350 kHz) and 4.23 ± 0.12 (for the range of
frequencies close to 500 kHz) and these values are
reliable and reasonable. The theoretical value of the
Feigenbaum constant is 4.6692. . . . Taking into ac-
count the revealed values, the last one, 4.23, corre-
sponds well with the theoretical value and a trend
to achieve a precise value is visible. Similar val-
ues were delivered by Prusha in [7] or Tamasevicius
et al. in [8].

A chaotic response of an RLD circuit can poten-
tially be applied to produce one-time pads in secret
communication. Each change of some parameter
(i.e., the value of induction or resistance) could give
a drastically different response in the output, which
is extremely important in encoding and decoding.

4. Conclusions

In the present paper, the chaotic behavior
of the resistor–inductor–diode series circuit was
simulated. It was shown that such a simple system
is very sensitive to frequency changes. Chaotic

behavior was presented using time dependences of
the voltage or current. Moreover, it was proven
by the construction of the phase space for differ-
ent values of frequency. Further analysis, including
the plotting of the Feigenbaum diagram, confirmed
the multiplying of the period with the increase of
frequency. This diagram allowed to calculate pa-
rameter δ (the Feigenbaum constant) and it equaled
4.23± 0.12. Such a value corresponds well with the
theoretical predictions.
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