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The paper formulates and solves the problem of free longitudinal vibration of the lower-limb exoskeleton
using the method of Lagrange multipliers. Parts of the exoskeleton were replaced with continuous
and discrete elements. The physical model includes properties characterizing the interaction between
exoskeleton components, contact with the ground and the method of applying the load. On the basis
of the presented model, an algorithm and a computational program were developed. It allowed to
conduct the studies of the influence of selected model parameters on the longitudinal vibrations of the
considered system.
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1. Introduction

Exoskeletons as mobile devices are exposed to di-
verse and varying environmental conditions. De-
pending on the purpose and characteristics of the
user, they focus on supporting specific parts of the
body [1]. When carrying various types of loads or
assisting the user’s movement, they must ensure re-
liability and safety at work [2]. Therefore, mecha-
nisms of this type should be examined with partic-
ular care, taking into account the influence of many
parameters on their reliability.

The exoskeleton, as a walking machine, is ex-
posed to a number of overloads, e.g., associated
with bump during the contact of the mechanism
with the ground, which may cause a sudden in-
crease in stresses [3]. Other undesirable phenomena
are construction vibrations, which are particularly
dangerous in the case of walking machines [4, 5].
They can cause problems with movement control
and, in extreme cases, lead to the destruction of the
mechanism [6]. Therefore, in this study, a discrete-
continuous model of longitudinal vibrations of the
exoskeleton of the lower limb was developed. The
model takes into account the transferred mass and
the influence of the ground parameters on structure
vibrations. Exemplary calculations were carried out
for two positions (which occur during the working
cycle) of the lower limb and for variable parameters
describing the ground [7].

2. Model description

The analyzed discrete-continuous model of
the exoskeleton’s lower limb and its mechani-
cal implementation are shown in Fig. 1. The

discrete-continuous model consists of two rods of
length L1 and L2 responsible for transferring the
load of the entire mechanism to the ground. The
system is loaded with a mass m that replaces the
top of the exoskeleton components, such as struc-
tural components, batteries, controllers of drives,
and the on-board computer, and takes into account
additional elements such as the carried load. The
movement of the mass is restrained to operate only
vertically. The influence of the ground on the mech-
anism was modeled using a translational spring with
the stiffness Ks. During the duty cycle, the values
of the angles α and β are changed. These angles are
directly bound up with the angular displacement in
the joints and are included in the control system of
the device.

3. Problem solution

The Lagrange multipliers method was used to de-
termine the frequency of longitudinal vibrations of
the analyzed model. Using the derivations from [8],
the total kinetic (T ) and potential (V ) energy for
the presented system can be written as:
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for p = 1, 2. The values of mi and ki were also
determined on the basis of the relationship taken
from [8].
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Fig. 1. The exoskeleton’s lower limb: (a) 3D
model, (b) discrete-continuous model.

The constraints functions, which result from the
method of the joint discrete elements in the whole
system as well as from the connection between the
bars, are as follows:

f1 ≡ u1(0, t) sin(α)− z1(t) = 0,

f2 ≡ u1(L1, t) sin(α)− u2(0, t) sin (β − α) = 0,

f3 ≡ u2(L2, t) sin (β − α)− z2 (t) = 0. (4)
Lagrange’s kinetic potential for the above set of
equations has the form:

L = T − V +

3∑
r=1

λrfr, (5)

where λr are the Lagrange multipliers. Based on the
Lagrange equations of the second kind, the follow-
ing set of equations can be written for the system
under study:

• for i = 0, 1, . . . , N1

M1iξ̈1i +K1iξ1i = sin(α)

2∑
r=1

λrb1ir (6)

• for i = 0, 1, . . . , N2

M2iξ̈2i +K2iξ2i = sin (β − α)
3∑

r=2

λrb2ir (7)

with conditions to fulfil
mż1 + λ1 = 0, and Ksz2 + λ3 = 0. (8)

In the case of (6) and (7), the denotations are in-
troduced:

b1ir = U1i (xr) , for

{
r = 1⇒ xr = 0,

r = 2⇒ xr = L1,

b2ir =

{
−U2i (xr) for r = 2⇒ xr = 0,

U2i (xr) for r = 2⇒ xr = L2.
(9)

To determine the frequency of free vibrations,
we have to derive the set of equations for this pur-
pose. We assume the harmonic solution of the sys-
tem (6–8), in the form:

ξni
= Ani

sin (ωt) for n = 1, 2,

zl = Zl sin (ωt) for l = 1, 2,

λr = Λr sin (ωt) for r = 1, 2, 3. (10)
After inserting the dependences (10) into the set

of equations (6) and (7), one obtains the amplitude
values of the harmonic solution, i.e.,
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. (11)

The system of equations (6) and (7) can now be ex-
pressed in a matrix form as

CΛ = 0, (12)

where Λ =
[
Λ1,Λ2,Λ3

]T
and C denotes the square

matrix
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, (13)

with the designated parameters
ε1 = −1/(mω2),

ε2 = 0,

ε3 = 1/Ks, (14)
and

Cnkr
=

Nn∑
i=0

bnik
bnir

Kni − ω2Mni

. (15)

The equation set (11) yields the eigenvalue problem
det(C) = 0, (16)

which enables one to calculate the free vibration
frequency of the system.
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3. Results and discussion

On the basis of the presented mathematical
model, the algorithm and computer program have
been worked out and numerical calculations have
been carried out. The bisection method was used to
the root-finding method. The sample computations
have been conducted for the following parameters:
L1 = 0.5 m, L2 = 0.5 m, rods with a rectangular
section of 0.02× 0.045 m2, N1 = 10, N2 = 10. The
influence of:

• configuration, i.e., α = 90◦, β = 180◦ and
α = 45◦, β = 90◦,

• carried mass, i.e., m = 50 kg, m = 60 kg,m =
70 kg,

• rods material (AISI 1020: E = 2× 1011 Pa,
ρ = 7700 kg/m3, 1060 Alloy:
E = 6.9× 1010 Pa, ρ = 2700 kg/m3,

• stiffness of ground, i.e., Ks = 108 ÷ 1015 N/m

on the values of the first three free vibration fre-
quencies of the exoskeleton were analyzed.

The obtained results are presented in Figs. 2–4.
Figure 2 includes a legend that also concerns the
remaining results.

The greatest differences in the frequency values
occur for the Ks parameter values in the range
108 ÷ 1011 N/m. Analyzing the data in Fig. 2, it can
be concluded that:

• in the case of the basic vibration frequency,
all parameters have a significant influence on
its value and:

– as the mass m increases, the frequency
value decreases,

– for the bent leg (α = 45◦, β = 90◦),
the frequency values are greater about
40% than for the straight leg (α = 90◦,
β = 180◦),

– frequency values for AISI 1020 are higher
about 68% than for the 1060 Alloy;

Fig. 2. First vibration frequencies of the discrete-
continuous model of the exoskeleton’s lower limb.

Fig. 3. Second vibration frequencies of the discrete-
continuous model of the exoskeleton’s lower limb.

Fig. 4. Third vibration frequencies of the discrete-
continuous model of the exoskeleton’s lower limb.

• for other frequencies:

– the ground stiffness (Ks) in the range
108÷ 1011 N/m has the greatest impact,

– the effect of carried mass m is negligible,
– for the Ks parameter in the range
108 ÷ 1010 N/m, the frequency values for
Alloy 1060 are higher (max. 15%) than
for AISI 1020, and for Ks bigger than
1010 N/m, the frequency values for al-
loy 1060 are lower (1%–3%) than for
AISI 1020,

– for the straight leg, the frequency val-
ues are higher (max. 10%) than the fre-
quency values for the bent leg (for theKs

parameter in the range 108 ÷ 1010 N/m,
upper of this value the impacts of α and
β are marginal).

4. Conclusions

The worked out model enables the analysis of free
longitudinal vibrations of the lower-limb exoskele-
ton. The obtained results demonstrated that when
the exoskeleton is designed, it is necessary to take
into account the base on which it will move, because
ground stiffness significantly affects the frequencies
of longitudinal vibrations. In addition, when se-
lecting drive systems, motors should be selected so
that the frequencies produced by them do not cause
resonance of the entire structure (for a given struc-
ture, they do not generate vibrations in the range
from 120 Hz to 420 Hz, which corresponds to the
basic vibration frequency of the system depending
on the operating parameters). The next stage of
research will be to develop a model of transverse
vibrations [9] of the discussed mechanism.
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