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We consider a system composed of two linearly mutually interacting, identical Kerr-like nonlinear
oscillators. Assuming that the system initially is in a coherent state, we discuss the system’s dynamics
and concentrate on the field’s mutual correlations. As a measure of such correlations, we apply the
normalized first- and second-order coherence functions. We derive the analytical formulas for such
functions showing that their time-evolution strongly depends on the linear coupling parameter.
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1. Introduction

The quantum aspects of the properties of physi-
cal systems can be analyzed in various ways. Apart
from the commonly discussed last time quantum
entanglement or quantum steering, it can be done,
for example, with an application of the studies of
other quantum correlations appearing in the sys-
tem. For instance, the first- and second-order co-
herence functions can be applied for such purposes.
The concept of the degree of coherence was pro-
posed in 1938 by Zernike [1]. Next, Hanbury-Brown
and Twiss in 1956 applied the intensity correla-
tion function in the statistical description of mea-
surements of photons emitted by spatially coherent
light [2], including that originating from the dis-
tant stars [3]. Those experiments have initiated the
studies devoted to the fluctuations of the electro-
magnetic field. In the next years, various measure-
ments and devoted to them considerations were per-
formed in the research related to various physical
systems. Examples of such investigations concerned
sodium atoms [4], optomechanical systems [5], po-
lariton condensates [6], ultraintense twin beams [7],
and many others.

In this paper, we will study correlations between
two subsystems of the Kerr-like quantum nonlinear
coupler. We will derive the analytical formulas de-
scribing the first- and second-order cross-correlation
functions with an application of the operators’ time-
dependent form, analogously as in [8]. Then, we will
analyze the time-evolution of such correlation func-
tions and focus on the influence of the strength of
interaction between these subsystems on the gener-
ation of the first- and second-order correlations.

2. The model

We consider a system composed of two identical
nonlinear Kerr-type oscillators (subsystems) labeled
as 1 and 2. The system can be described by the fol-
lowing Hamiltonian:

Ĥ = ω
(
â†1â1 + â†2â2

)
+ χ

(
â†21 â

2
1 + â†22 â

2
2

)
+ε
(
â1â
†
2 + â2â

†
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)
+ κ
(
â†1â1â

†
2â2
)
, (1)

where the operators â†j and âj are the bosonic
creation and annihilation operators for the mode
j = 1, 2, respectively. The frequency of oscillatory
modes of the field is equal to ω, whereas ε rep-
resents the strength of the linear interaction be-
tween the subsystems. The parameters χ and κ are
proportional to the third-order susceptibility and
characterize the nonlinear oscillators. They are re-
lated to the self-action and cross-action processes,
respectively.

It should be noted that the same Hamiltonian
as ours was considered by Korolkova and Peřina to
describe two parallel waveguides with optical Kerr-
like media [8], and by Kuang et al. to discuss two
Bose–Einstein condensates involving weak nonlin-
ear interatomic interactions [9].

In our considerations, we assume that all param-
eters appearing in the Hamiltonian (1) are real.
Additionally, the Kerr-like nonlinearity indexes are
the same for both modes and equal to χ. We as-
sume that the time-evolution of the system starts
from the two-mode coherent state |α〉 = |α1〉⊗|α2〉,
where α1 and α2 are the complex amplitudes of the
coherent states corresponding to the first and the
second mode of the field, respectively.
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3. Results and discussion

We concentrate here on the quantum proper-
ties of the Kerr nonlinear coupler expressed by the
first- and second-order correlation functions g(1)

and g(2). These functions are cross-correlation func-
tions of different order, and specify the coherences
between fields’ amplitudes and intensities, respec-
tively. Each of them can be written in a specific
form [10, 11].

Let us start with the definition of

g
(1)
12 (t) =

∣∣∣〈â†1(t)â2(t)〉∣∣∣√
N1(t)N2(t)

, (2)

where N1(t) = 〈â†1(t)â1(t)〉 and N2(t) =

〈â†2(t)â2(t)〉 are the mean numbers of photons in
the first and second mode of the field, respectively.
It should be emphasized that the first-order correla-
tion function takes values from zero to unity. More-
over, if g(1)12 reaches zero, the coherence between the
two modes is not observed, whereas if it is equal to
unity, the full coherence is present.

Using (2) and the forms of operators â1(t)
and â2(t) derived in [8], we obtain the formula for
the g(1) function. It can be written as

g
(1)
12 (t) =

∣∣∣|β1|2 − |β2|2 + (V − V ∗)
∣∣∣√(

|β1|2 + |β2|2
)2
−
(
V + V ∗

)2 , (3)

where
V = β1β

∗
2 exp

(
2iεt+ f(− iθt) |β1|2

+f (iθt) |β2|2
)
, (4)

and θ = χ − κ
2 , β1 = 1√

2
(α1 + α2) and

β2 = 1√
2
(α1 − α2). Moreover, one applies the func-

tion f(γ) = −1 + exp(γ) which is valid for the ar-
bitrary value of the variable γ.

To calculate the second-order correlation func-
tion, we applied the definition

g
(2)
12 (t) =

〈
â†1(t)â

†
2(t)â1(t)â2(t)

〉
N1(t)N2(t)

, (5)

followed by [10, 11]. For correlated subsystems,
g(2) > 1, whereas, for the anticorrelated ones, it
takes values smaller than unity. When the second-
order correlation function is equal to unity, we have
uncorrelated modes.

Using (5) and the explicit form of operators â1(t)
and â2(t) derived in [8], we get

g
(2)
12 (t) =

|β1|4 + |β2|4 − (J + J∗)(
|β1|2 + |β2|2

)2
− (V + V ∗)

2
, (6)

where
J = (β∗2)

2β2
1 exp

(
4iεt+ f(−2iθt) |β1|2

+f(2iθt) |β2|2
)
. (7)

The time-evolution of both types of quantum
correlations discussed here is presented in Fig. 1.

Fig. 1. The time-evolution of (a) the first-order
and (b) second-order correlation functions for κ =
0.16, χ = 0.1, ε = 1. Time is scaled in the units
of 1/ε.

In Fig. 1a, we see that the first-order correlation
function changes periodically. Such changes in the
value of g(1)12 exhibit oscillations characterized by
high and low frequencies. Additionally, the first-
order correlation function reaches values from zero
to unity, which is related to the disappearance of
coherence and the full coherence’s appearance, re-
spectively.

Analogously as for g
(1)
12 , the second-order cor-

relation function exhibits periodic oscillations
(see Fig. 1b). The function g(2)12 takes a value equal
to or smaller than unity. It means that for our sys-
tem, the uncorrelated and anticorrelated modes can
be observed, respectively. The second-order correla-
tion function becomes equal to unity when the g(1)12

reaches its maximal value, and thus when the full
first-order coherence between modes appears.

Next, we analyze how the quantum correlations
depend on the strength of the linear interaction be-
tween subsystems. Thus, in Fig. 2, we show the
dependence of the maximal and minimal values of
first- and second-order correlation functions on the
value of ε.

In Fig. 2a, we see that, contrary to the minimal
value, the maximal value of g(1)12 depends on the pa-
rameter ε. For weak coupling between the subsys-
tems, only for some values of ε, the maximal value
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Fig. 2. The maximal and minimal values of (a) the
first- and (b) second-order correlation functions vs.
the value of the strength of the linear interaction
between subsystems. We assume that κ = 0.16,
χ = 0.1.

of the first-order correlation function is not equal
to unity — we do not observe full intermode coher-
ences for such a case. However, as ε increases, the
maximal value of g(1)12 becomes practically equal to
unity, and strong first-order correlations appear in
the system.

If we analyze the second-order correlation func-
tion, we see that its maximal value does not de-
pend on the epsilon’s value. On the other hand,
its minimal value changes with increasing the cou-
pling parameter. We see that the minimal value of
the second-order correlation function equals zero for
some values of the coupling strength. That means
that the function g

(2)
12 changes from zero to unity,

such as it is shown in Fig. 1a.

4. Conclusion

In the present paper, the model of the Kerr-type
nonlinear coupler was considered. In particular, we
were interested in the time-evolution of the quan-
tum correlations present in this system. Applying
the Heisenberg equation’s analytical solutions de-
rived in [8], we have found the analytical formulas
determining the first- and second-order correlation
functions. We studied the time-dependence of such

cross-correlation functions for various values of the
interaction parameters. We have shown that the
maximal and minimal values of the functions g(1)12

and g(2)12 , respectively, strongly depend on the cou-
pling strength. The obtained results show that the
system considered here can be a source of strong
correlations, including the full coherence. Addition-
ally, we have proved that the degree of correlations
between the modes can be easily controlled by mod-
ifying the parameters describing the system.
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