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This paper focuses on a problem of solidification with convection. The performance of a developed
model against a standard benchmark of solidification commonly found in literature is presented. The
developed model is based on the Navier–Stokes equation and the energy equation with the convection
term and also takes into account the latent heat of solidification. This set of equations is numerically
solved by the finite element method. In order to overcome numerical difficulties arising from solving
the Navier–Stokes equation, the streamline upwind Petrov Galerkin and the pressure stabilized Petrov
Galerkin types of the FEM formulation are used. The resulting numerical model is implemented in the
C++ programming language with the use of state of the art numerical libraries which allows it to be
run on high-performance computers. The comparison of results from the in-house model with results
obtained by other authors allows to verify the validity of the chosen methods and implementation. The
inclusion of convection in the solidification model allows to extend the model with the possibility of
prediction of macrosegregation or cavity occurrence, both of which are important for the prediction of
defects in foundry processes.
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1. Introduction

Solidification is a difficult problem to prepare
a mathematical description of it. From the phys-
ical point of view, it involves heat transfer with
a phase change and a moving interface that divides
two phases (in the case of a pure metal solidifi-
cation) [1] or a mushy zone that is a mixture of
the solid and liquid phases (in the case of alloys
solidification) [2].

Heat transfer in solidification problems can be
in the form of conductivity and convection. While
the conductive heat transfer is usually easy to solve
and does not require very computationally intensive
techniques, more detailed models have to use com-
putational fluid mechanics for the introduction of
convective heat transfer, which comes with a great
computational cost [3, 4].

There is a trend of using algorithms pre-
pared for high-performance computing, when deal-
ing with problems involving computational fluid
mechanics [5].

Because of this, the solidification problem is still
a popular research topic. Researchers use different
numerical methods to solve equations arising from
the physical model. Very popular are finite differ-
ences, finite volumes and finite elements [6].

The major goal in simulations of solidification
is to improve the technological processes and the
quality of products [7]. In this topic, researchers

can focus on different scale sizes: microscopic or
macroscopic. All of them can be important for
refining technological parameters. This work fo-
cuses mostly on simulations done at the macro-
scopic scale. The author presents numerical model
of solidification and its performance in one of popu-
lar benchmark problems involving phase change and
liquid phase flow.

2. Mathematical model

The governing equation for modeling the solid-
ification process is based on the energy transfer
equation:

ρ
∂H

∂t
+ ρ (u · ∇)H = λ∇2T, (1)

where ρ is the density, H is the enthalpy, T is the
temperature, u is the velocity from the convection
force, λ is the thermal conductivity and t is the
time.

With the use of the apparent heat capacity for-
mulation [8] and assuming that the solid phase ve-
locity in the mushy region is zero, it is possible to
express (1) in the following way:

c∗
∂T

∂t
+ ρc (u · t∇)T = λ∇2T, (2)

where c∗ is the approximation of the effective
heat capacity, which includes the latent heat of
solidification.
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The boundary condition, used in the model pre-
sented with (2), is the Dirichlet boundary condition
(boundary condition of the first type) on external
sides of casting.

For the approximation of the effective heat ca-
pacity, various methods can be used. Some of them
may pose numerical difficulties during calculations,
but all of them give very similar results [9]. In this
work, the Morgan method is used. Hence,

c∗ =
Hn −Hn−1

Tn − Tn−1
, (3)

where n in the upper script is the time level.
Liquid metal in this model is assumed to be a

Newtonian fluid. This allows to write the Navier–
Stokes set of equations as:

ρ

(
du

dt
+ (u∇)u

)
+ ρµ

(
(∇u) + (∇u)T

)
−∇p+ ρµ

fl
Kε

u = ρf (4)

and
∇ · u = 0, (5)

where p is the pressure and µ is the viscosity.
The last term of the left-hand side part of (4)

is, in general, a drag force. This term describes
the flow of liquid metal in a porous medium that
appears in the mushy zone. Here, fl is the liquid
fraction and Kε is the permeability of the mushy
zone. A drag force appears in the mushy zone from
the interaction between liquid and already solidified
metal, and severely slows down the velocity of liquid
metal in the mushy zone.

In the presented model, it is assumed that the
solid phase is immovable [10]. The permeability of
the mushy zone is approximated by the Kozeny–
Carman equation:

Kε = K0
f3l

(1− fl)2
, (6)

where K0 is the secondary dendrite arm spacing.
The right-hand side part of (4) describes body

forces that arose in the liquid. This part is con-
nected with the buoyance force that is approxi-
mated by the Boussinesq formula:

f = −gβ (T − T0) , (7)
where β is the expansion coefficient, g is the gravita-
tional acceleration, T0 is the reference temperature,
which in this case was the temperature from initial
conditions.

The liquid fraction and the solid fraction are con-
nected with a simple relation, i.e.,

fl = 1− fs, (8)
where the value of fs is taken from the phase equi-
librium graph relationship

fs =
1

(1− k)
TL − T
TM − TL

, (9)

where TL is the liquidus temperature, TM is the so-
lidification temperature of the pure component and
k is the solute partition coefficient.

Now, an appropriate set of initial and boundary
conditions should be attached to (4). An initial
value of u is set as for the initial condition, while
the no-slip condition is used on walls of the casting
domain in order to force the velocity value to be zero
on those boundaries. Then, (4) and (5) are solved
numerically with the help of the stabilized finite el-
ement method. Details concerning the application
of this method can be found in [11].

3. Problem setup and simulations results

The data for the benchmark problem was taken
from [12]. It consists of the solidification problem
inside a closed cavity. A schematic picture of the
region with the added description of boundary con-
ditions can be seen in Fig. 1. The computational
area is a regular square with a side length equal
to 0.05 m.

Fig. 1. Computational domain used for bench-
mark problem.

TABLE I

Thermophysical properties of alloy under study, to-
gether with boundary and initial temperatures.

Property Value
conductivity 100 W/(m ◦C)
specific heat 1000 J/(kg ◦C)
density 2500 kg/m3

latent heat 400000 J/kg
viscosity 0.0025 kg/(m s)
coefficient of thermal expansion 4.0× 10−5

solidus temperature 550 ◦C
liquidus temperature 650 ◦C
melting point of pure aluminium 675 ◦C
partition coefficient 0.14
cold side temperature 500 ◦C
hot side temperature 700 ◦C
initial temperature 700 ◦C
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Fig. 2. Temperature distributions: (a) after 5 s,
(b) after 10 s and (c) after 15 s.

It is assumed that the whole area is filled with
a molten alloy. Physical details of this alloy are
listed in Table I. It has physical properties close to
the Al4Cu alloy. It is assumed that in the initial
state the molten alloy is in the uniform temper-
ature of 700 ◦C, just above its liquidus tempera-
ture. Boundary conditions for this problems are:
the top and bottom sides have perfect insulation,
while the left side of the area cooled to tempera-
ture 500 ◦C. The right side has the presumed tem-
perature of 700 ◦C. For the left and right sides, the
Dirichlet boundary condition was used. The top
and bottom sides use the Neumann boundary con-
dition with zero flux.

Figures 2 and 3 present the results of simulation
with the author’s model. The figures present the
profiles taken at moments of 5, 10 and 15 s of the
simulation time. The results were obtained from
the model based on solving (4) and (5) with the
stabilized finite element method. Besides physical
properties presented in Table I, the following nu-
merical parameters were used: the size of the time
step equal to 0.05 s and the average size of the tri-
angle finite element equal to 2.0× 10−4 m.

Fig. 3. Velocity profiles: (a) after 5 s, (b) after 10 s
and (c) after 15 s.

Temperature profiles in Fig. 2 show that the con-
vection as isothermal lines do not form vertical lines.
Instead, the hot liquid metal is pushed by the buoy-
ancy force close to the top of the cavity and solidi-
fication occurs mostly at the bottom of the cavity.
Velocity vectors in Fig. 3 show that the movement
of the liquid phase in this problem is anti-clockwise.
Both of those behaviors are expected and were re-
ported by other authors who conducted simulations
for this benchmark [12, 13].

4. Conclusions

Based on temperature profiles, it can be seen that
a qualitative behavior of the presented model is cor-
rect. It can be observed that the layer of the so-
lidified metal is thicker at the bottom of the re-
gion. Based on the velocity plot, it can be observed
that velocity vectors of the liquid metal have anti-
clockwise orientation. This behavior is in agree-
ment with physical observations. Moreover, the ob-
tained temperature profiles are also in good agree-
ment with temperature profiles presented by other
authors.
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