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In this work, the influence of the loading method of an elastically mounted column on its natural
frequency was investigated. The classic way to load these types of systems is to apply an axial force.
In the presented approach, the load of the system in the form of a mass element was adopted, which much
better reflects the real slender support system, whose task is to support a structure with a specific own
weight. During the formulation of the boundary problem, Hamilton’s principle and the perturbation
small parameter method were used. A series of numerical simulations were carried out, taking into
account the influence of the system parameters and the method of loading on the non-linear natural
frequency. The main task was to determine the impact of the change in stiffness at mounting points
of the system ends on the dynamic behaviour of the structure. It was shown that this stiffness has
a significant impact on the natural frequency. It was also indicated that in the problem formulated in
this way, the amplitude level of the induced system vibrations is of significant importance — which is
not taken into account in the case of a force load. The knowledge of potential resonance frequencies in
the case of slender support systems is one of the basic data taken into account in the design process of
this type of structures due to their susceptibility to vibrations.
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1. Introduction

Vibrations are one of many physical problems
that determine the periodic change of certain phys-
ical quantities. Mechanical vibrations refer to the
periodic change of position (which can be defined
as the vibration amplitude) of the system occurring
around a certain balance point with a specific fre-
quency. If the frequency of the system’s vibrations
(resulting from the action of the external exciting
force) coincides with the frequency of natural vibra-
tions, a resonance phenomenon occurs, resulting in
a rapid increase in the vibration amplitude. In the
case of mechanical systems (e.g., supporting pillars,
industrial machines), the occurrence of resonance is
a negative and very dangerous phenomenon.

For this reason, the issues of vibrations of physi-
cal and mechanical systems are the subject of many
scientific and research works. In the case of the
analysis of free vibrations, the influence of various
system parameters or loads on the change of natu-
ral frequency is determined. Such issues are raised,
among others, in [1–10]. Stability and free vibra-
tions of a compound column with a piezoelectric
rod are considered in [1]. A geometrically nonlinear
two-member column under an eccentric, partially
follower load is analysed. Characteristic curves

are shown for different cases of loading and actua-
tion. A free vibration analysis of sandwich columns
with homogeneous core materials is described in [2].
The problem is formulated analytically and also
the finite elements models are developed. In [3],
the studies cover free vibration and buckling analy-
sis of tapered columns made of axially functionally
graded materials. The governing differential equa-
tions of the problem are derived and solved using
the direct integral method combined with the de-
terminant search technique. The obtained results
are compared with those in the literature and cal-
culated in FE software ADINA. Vibration of non-
prismatic linear beam-columns, with semi-rigid con-
nections on elastic foundation, is considered in [4].
The effect of a variable two-parameter elastic foun-
dation is discussed. Further, the non-linear vibra-
tions of a slender system subjected to an exter-
nal force applied between the elements of a struc-
ture are discussed in [5]. The relation between
the amplitude and the natural vibration frequency
is obtained. Stability and free vibrations prob-
lems of stepped columns with cracks are presented
in [6]. The cracks in the column are represented by
massless rotational springs. The frequency equa-
tion is obtained by using properties of the Green
functions.
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Moreover, studies [7] cover the free vibration
problem of a non-uniform column using the differ-
ential quadrature method. The results are com-
pared with the exact solution and the FEMmethod.
In [8], the optimum design process of thermally
loaded beam-columns for maximum vibration fre-
quency or buckling temperature is shown. In turn,
the vibration problem of beam with mass at free end
is presented in [9]. The system is additionally sup-
ported at various distances from the rigid mount-
ing. Further, the problem of non-linear vibrations
of a simply supported column loaded by the mass
element is studied in [10]. The results show the im-
pact of the amplitude and slenderness of the system
on the free vibrations frequency.

In this work, an elastically mounted column un-
der mass load is considered. The problem is non-
linear due to the mass loading. In such a case, a sig-
nificant effect on the natural frequency has the vi-
bration amplitude.

2. Boundary problem
of free non-linear vibrations

The column (with the length l) elastically
mounted on both sides and loaded by the mass ele-
ment M is under consideration. The load fulfils the
Euler load conditions with the longitudinal inertia
of the loading element additionally taken into ac-
count. The elastic mounting of the system is mod-
elled by means of two rotational springs R0 and R1

(see Fig. 1).
The boundary problem was formulated using

Hamilton’s principle and taking into account the
following dimensionless parameters:

w (ξ, τ) =
W (x, t)

l
, ξ =

x

l
,

u (ξ, τ) =
U (x, t)

l
, τ = ωt, (1)

k2 (τ) =
S (t) l2

EJ
θ =

Al2

J
, Ω2 =

ω2 (ρA) l4

EJ
,

where ω is the natural frequency, S(t) — the in-
ternal force, E — the Young modulus, J — the
geometric moment of inertia, ρ — the density,
A — the cross-section of the column.

Based on Hamilton’s principle, and also taking
into account the geometric boundary conditions

w (0, τ) = w (1, τ) = u (0, τ) = 0, (2)
and the natural boundary conditions of the form

EJ

l

∂2w (ξ, τ)

∂ξ2

∣∣∣∣
ξ=0

−R0
∂w (ξ, τ)

∂ξ
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ξ=0

= 0 (3)

EJ

l

∂2w (ξ, τ)

∂ξ2

∣∣∣∣ξ=1

+R1
∂w (ξ, τ)

∂ξ

∣∣∣∣ξ=1

= 0 (4)

k2 (τ)EJ

l2
−Mω2l

∂2u (ξ, τ)

∂τ2
= 0, (5)

Fig. 1. Scheme of the considered system.

then the equations of motion of the system are de-
termined in the respective, transverse and longitu-
dinal directions to its axis, i.e.,

∂4w (ξ, τ)

∂ξ4
+ k2 (τ)

∂2w (ξ, τ)

∂ξ2

+Ω2 ∂
2w (ξ, τ)

∂τ2
= 0 (6)

∂

∂ξ

(
∂u (ξ, τ)

∂ξ
+

1

2

(
∂w (ξ, τ)

∂ξ

)2
)

= 0. (7)

The non-linear term appearing in (7) is developed
into a series of small vibration amplitude parame-
ters ε. Then, (6) and (7) are grouped with respect
to the same powers of the small parameter. The ob-
tained equations are solved sequentially and, based
on them, the following parameters are determined:

• linear component of internal force in the col-
umn,

• linear component of natural frequency,
• nonlinear component of internal force in the
column,

• non-linear component of natural frequency.

3. Results of numerical simulations

The main problem in this study was to determine
the effect of the mounting stiffness of the considered
column on its nonlinear natural frequency. The re-
sults of the numerical calculations were presented
with the use of dimensionless parameters:

λ =
M

ME
, Ω∗ =

√
Ω2

0 + ε2Ω2
2 ,

ζA =
Amp

r
, r0 =

R0l

EJ
, r1 =

R1l

EJ
, (8)
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Fig. 2. The influence of one-side mounting rigidity
on natural frequency: (a) ζA = 0, (b) ζA = 1.

where λ is the external load parameter, M — the
mass loading the column,ME — the critical mass of
the clamped-clamped column (calculated with the
use of Euler’s buckling theory), Ω∗ — the param-
eter of natural frequency, Ω0 — the parameter of
the linear component of natural frequency, ε — the
small amplitude parameter, Ω2 — the parameter of
the non-linear frequency component of natural vi-
brations, ζA — the vibration amplitude parameter,
Amp — the amplitude of vibrations, r — the gyra-
tion radius, r0 — the parameter of the stiffness in
the bottom mounting, r1 — the parameter of the
stiffness in the top mounting.

The results of numerical calculations are pre-
sented in the form of characteristic curves (on the
plane load — natural frequency). This form allows
to analyse changes in the vibration frequency of the
system in the entire range of its real load from the
point of view of stability (from zero to critical load,
at which the system buckles).

Different cases of stiffness change in the mount-
ing points of the column were considered: stiffness
change in only one of the mountings (see Fig. 2) and
simultaneous change in the stiffness in both mount-
ing points (see Fig. 3), taking into account the linear
component of frequency (cases (a)) and taking into
account the nonlinear component (cases (b)).

Fig. 3. The influence of two-sides mounting rigid-
ity on natural frequency: (a) ζA = 0, (b) ζA = 1.

4. Conclusions

On the basis of the obtained results, it was found
that an increase in the stiffness in the supports
causes the characteristic curves to shift towards
higher values. This is because the overall system
stiffness has increased. The course of characteristic
curves in the linear problem is linear. Increasing
the stiffness in the supports may increase the criti-
cal load of the system (λ for Ω∗ = 0). The increase
in stiffness when considering the same column load
causes an increase in natural frequency. Control-
ling the stiffness of the support can be one way to
actively counteract resonance.

Taking into account the non-linear problem (the
amplitude effect) changes the course of the charac-
teristic curves from linear to non-linear. It can be
observed that with certain values of stiffness, the
critical load of the system decreases. This is mainly
due to the vibration amplitude and increased sys-
tem stiffness. As shown in [10], an excessive in-
crease in amplitude may result in the reduction of
the critical load. Moreover, the influence of the set
amplitude level on the system with higher stiffness
is greater, therefore, with higher stiffness in the sup-
ports, a reduction of the critical load with regard to
the linear problem can be observed. In an extreme
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case, the curves may intersect (see Fig. 3b). In this
case, the increase in stiffness in relation to the same
level of vibration amplitude resulted in a significant
reduction of the critical load.
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