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The ultra-peripheral Pb+Pb collisions at
√
sNN = 5.02 TeV recorded by the ATLAS experiment are

used to study a rare light-by-light scattering process, γγ → γγ, allowed in quantum electrodynamics
via a loop diagram. The report summarises recent light-by-light measurements conducted using a com-
bination of 2015 and 2018 Pb+Pb data sets collected by the ATLAS experiment, corresponding to
an integrated luminosity of 2.2 nb−1. The light-by-light event candidates are required to consist of only
two photons produced exclusively, each with transverse energy ET > 2.5 GeV, pseudorapidity |η| < 2.4,
diphoton invariant mass mγγ > 5 GeV, and with diphoton transverse momentum pTγγ < 1 GeV and
acoplanarity below 0.01. The diphoton invariant mass distribution is used to set limits on the produc-
tion of axion-like particles.

topics: light-by-light scattering, axion-like particles, ATLAS

1. Introduction

Light-by-light (LbyL) scattering, γγ → γγ, is
a very rare phenomenon, predicted by Euler and
Heisenberg in the early 1930s, in which two photons
— particles of light — interact, scattering off each
other like particles of matter. The interaction is me-
diated via a quantum loop of virtual charged par-
ticles: fermions (leptons or quarks) or bosons W±
at the order of α4

em, where α4
em is the fine-structure

constant. This is visualized in Fig. 1. A small prob-
ability of such a process to occur makes it very chal-
lenging to observe experimentally. Over the years,
the LbyL process was indirectly studied in measure-
ments of the anomalous magnetic moments of lep-
tons [2, 3] as well as in the Delbrück scattering [4]
and in the photon splitting [5]. Nonetheless, it took
more than 80 years until the first direct evidence
of LbyL scattering was reported by the ATLAS [6]
and CMS [7] Collaborations, followed by the ob-
servation of this process published by ATLAS with
a significance of 8.2 standard deviations in 2019 [8].

The ATLAS experiment [9] is one of two general-
purpose experiments at the Large Hadron Col-
lider (LHC) at CERN in Geneva. It was designed
very precisely to search for the Higgs boson in
proton–proton collisions, which according to the
Standard Model predictions, among a variety of de-
cay channels, may also decay into two photons. The
Higgs boson was discovered by ATLAS and CMS

Fig. 1. Feynman diagrams for (a) LbyL scattering
and (b) axion-like particle production [1].

Collaborations in 2012. The ATLAS experiment
also participates in the heavy-ion physics program
of the LHC and collects lead–lead (Pb+Pb)collision
data for about a month per year. Lead beams
can act as an intense source of high-energy photon
fluxes.

The amount of data collected in 2015 allowed
to conduct a search for LbyL scattering for the
first time at the LHC [6]. After data analysis,
it was found that from almost four billion strongly-
interacting events, only 13 diphoton candidates
were observed with 2 events originating from back-
ground processes. The result is in line with the
Standard Model predictions and thus it is the first
direct measurement of photon–photon scattering
with a significance of 4.4 standard deviations.
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In November 2018, there was another period of
Pb+Pb data taking with a factor of 3.5 more inte-
grated luminosity recorded by ATLAS. Such an en-
hancement in the event statistics, together with the
improvement of measurement techniques, allowed
to analyse LbyL scattering more precisely. In to-
tal, 59 events were observed in which only two pho-
tons were reconstructed in the detector [8]. The
observation was established with a significance of
8.2 standard deviations. This new measurement
performed by ATLAS Collaboration [1] paves the
way for searches of New Physics, i.e., for discov-
ering new particles and phenomena that the Stan-
dard Model fails to describe. In particular, the mea-
surement of the LbyL process is sensitive to contri-
butions beyond the Standard Model. It may pro-
vide insight into the production of axion-like parti-
cles (ALP). ALPs are hypothetical neutral particles
that may decay to a diphoton system, as shown
in Fig. 1b. Therefore, the measured diphoton in-
variant mass distribution can be used to search for
ALP production via the process γγ → a → γγ,
where a denotes the ALP.

2. Signature of interest

Heavy-ion or proton beams accelerated to rela-
tivistic TeV energies are sources of huge electromag-
netic fields which can be equivalently described as
a flux of quasi-real photons. Photon fluxes asso-
ciated with the beams scale as Z4 with the beam
charge making it extremely enhanced in Pb+Pb in
comparison to proton–proton collisions (Z = 82
for Pb, and Z = 1 for proton beams). Thus,
Pb+Pb collisions are experimentally preferred to
study LbyL scattering.

Heavy-ion collisions are mostly dominated by the
strong interaction except for ultra-peripheral colli-
sions (UPC), where the impact parameter is larger
than twice the radius of the nucleus. Such colli-
sions provide a very clean environment to study the
LbyL process as hadronic interactions are strongly
suppressed leaving the electromagnetic interaction
to play a main role.

The signature of interest is the exclusive pro-
duction of two photons, each with transverse en-
ergy EγT > 2.5 GeV, pseudorapidity |ηγ | < 2.37
and diphoton invariant mass mγγ > 5 GeV with
transverse momentum pTγγ < 1 GeV. Any ex-
tra activity in the detector is vetoed, in partic-
ular no reconstructed tracks originating from the
nominal interaction point with pT > 100 MeV are
accepted. The final state of photons is expected
to be aligned in the azimuthal angle φ. Back-to-
back topology is studied using diphoton acopla-
narity defined as‘ Aφ = 1− |∆φ|π . Event candidates
are expected to have Aφ < 0.01. Figure 2a shows the
acoplanarity distribution of candidate events, where
Aφ = 0 corresponds to two photons ideally aligned
in azimuth.

Fig. 2. The acoplanarity (a) and invariant mass
(b) distributions of the selected diphoton events [1].

A main background contribution originates from
exclusive production of electron–positron pairs
(γγ → e+e−), whose cross-section is α2

em times
higher as compared to LbyL. In the measurement,
the γγ → e+e− background is suppressed with the
requirement of no tracks and pixel-tracks recon-
structed in the Inner Detector. A remaining dielec-
tron contribution is evaluated using a data-driven
method.

The second significant background source is
gluon-induced central exclusive production of pho-
ton pairs (CEP, gg→ γγ). The gluonic initial state
has an identical signature as the LbyL process but
with larger initial transverse momentum which re-
sults in a broader shape of diphoton acoplanarity,
as is shown in Fig. 2a. The CEP background
is evaluated using a dedicated control region in
data (Aφ > 0.01) and then extrapolated to the
LbyL signal region.

3. Results

With high statistics of 2015 and 2018 Pb+Pb
data amounting to an integrated luminosity
of 2.2 nb−1, ATLAS established the observation
of a total of 97 candidate events with 45 expected
signal events and 27±5 events expected from back-
ground processes [8]. This can be translated into
a cross-section using an expression

σfid =
Ndata −Nbkg

C
∫
Ldt

, (1)
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Fig. 3. Differential cross-sections of γγ → γγ
scattering as a function of (a) diphoton invari-
ant mass and (b) the cosine of the scatter-
ing angle in the photon–photon centre-of-mass
frame [1].

where Ndata and Nbkg stand for the total number
of events in data and the number of background
events in the signal region, respectively. Denomi-
nator expression

∫
Ldt is the integrated luminosity

of the data sample, and C is the correction factor
obtained by analysing γγ → γγ events simulated
by SuperChic v3.0 [10]. This correction is applied
to account for detector efficiencies and resolution
effects.

The integrated cross-section measured in the
fiducial phase space defined in Sect. 2 is
σfid = 120± 17(stat.)±13(syst.)±4(lumi) nb. The
presented value can be compared with two theo-
retical predictions considered to be (i) 78 ± 8 nb
from the SuperChic v3.0 MC generator [10] and
(ii) 80± 8 nb from [11].

Comparison of the measured diphoton invari-
ant mass and expected yields with predicted signal
and background distributions is shown in Fig. 2b.
The distributions have not been corrected for de-
tector effects. Overall good agreement between
the Standard Model prediction and the data is
found. In addition to the integrated fiducial cross-
section, ATLAS measured γγ → γγ differential
cross-sections involving four kinematic variables of
the final-state photons.

Fig. 4. Summary of exclusion limits at 95 CL in
the ALP-photon coupling 1/Λa versus ALP mass
ma from different experiments. The new limit ob-
tained by ATLAS is marked with label: ATLAS
γγ → γγ [1].

Figure 3 shows examples of measured differential
cross-sections as a function of diphoton invariant
mass and the | cos (Θ∗) |, where Θ∗ is the scattering
angle in the photon–photon centre-of-mass frame.
In general, a good agreement between the measure-
ment and Standard Model predictions is found.

4. Search for ALP production

Axions, or more broadly axion-like parti-
cles (ALP), are hypothetical (pseudo-) scalar par-
ticles with typically weak interactions with Stan-
dard Model particles. They may be produced in
the photon–photon fusion, γγ → a → γγ, followed
by the decay to the diphoton pair. Thus, a dipho-
ton invariant mass distribution may be interpreted
for ALP searches. The ALP production would re-
sult in a resonance peak with diphoton mass equal
to the mass of a.

The diphoton mass distribution was examined for
a mass range between 6 and 100 GeV. No signifi-
cant excess of events over expected background was
found in the analysis. The 95% confidence level
limit was derived for ALP production cross-section
and ALP coupling to photons 1

Λa
as a function of

ALP mass. A summary of exclusion limits from dif-
ferent experiments together with the new ATLAS
constraints is shown in Fig. 4. The new ATLAS
analysis places the strongest limits on the ALP pro-
duction in the intermediate mass region to date.

5. Summary

The report summarises recent results on light-by-
light scattering measured in ultra-peripheral lead–
lead collisions at

√
sNN = 5.02 TeV obtained by

the ATLAS experiment at the LHC. A combined
2015+2018 data sample of 2.2 nb−1 is used. In-
tegrated fiducial and differential cross-sections are
measured and compared with Standard Model pre-
dictions. Overall good agreement is found between
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data and expectations. Furthermore, the measured
invariant mass of the diphoton system is used to set
new exclusion limits on axion-like particles. This
measurement provides the strongest limits on the
ALP production in the mass region of 6–100 GeV
to date.
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