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The crucial question every investor has to answer before buying stock is: what is the risk associated
with it? In this work, we applied the Continuous Detrended Fluctuation Analysis (CDFA) to un-
cover the point-wise Hölder exponent of the time series at various time scales. The Hölder exponent is
a time-dependent measure of the autocorrelation of the variability in data, and it can be used to measure
the market risk. CDFA is an extension of the popular Detrended Fluctuation Analysis (DFA) method,
but — contrary to DFA — it allows for estimating the Hölder exponent locally. We used this method
to study the two-minute frequency data of the U.S. S&P 500 index from 1984 to 1995. We found that
the value of the exponent increases as lower resolution data was used, which means the financial time
series appear more predictable at higher scales than at lower scales. Moreover, we found that correla-
tions between the Hölder exponent and the log returns and absolute log returns are scale-dependent.
That means that the CDFA method could potentially be used in the future to identify time scales at
which the series are the most predictable which can have practical applications.

topics: econophysics, financial time series, Hölder exponent, detrended fluctuation

1. Introduction

Economic systems are immensely complex, and
their analysis must rely mostly on time series data.
The dynamic of economic or financial time series
is often described by a power scaling. A time se-
ries characterized by a single scaling exponent is
called a fractal, and a multifractal if multiple dif-
ferent scaling exponents are required to describe its
behavior [1]. In the case of stochastic processes, we
call a process X self-similar if X(ct) ∼ cHX(t) in
terms of probability distributions and Hurst expo-
nent H measures then the self-similarity and the
intensity of long-range dependence [2]. The local
scaling behavior of time series can also be measured
using the Hölder exponent. It is defined [3] as the
supremum of all the alphas of the kind that
|f (x)− fn (x− x0)| ≤ C |x− x0|α , (1)

where fn(x) is the polynomial of degree n < α.
Notably, both the Hölder and the Hurst expo-

nents describe the same system behavior. The dif-
ference, however, is that Hurst is related to the
global scaling of the time series, while Hölder is

a local point-wise measure. We further show that
the exponents are indeed related by comparing the
time-averaged Hölder with the known Hurst expo-
nent of artificially generated time series.

Studying the long-term memory of the time se-
ries is important in many fields and applications.
In this paper, however, we focus on its application
to financial time series. The scaling exponent plays
an important role in the behavior of financial mar-
kets. It can reflect the randomness (persistence or
anti-persistence) of prices. Moreover, a lower Hurst
exponent is tied to higher volatility of prices [4].
This is true both mathematically and when the risk
is assessed by humans [5]. The scaling exponent
plays a role in the Value-at-Risk (VaR) calcula-
tions, as not accounting for H 6= 0.5, it can lead
to risk under- and overestimation in cases when the
VaR value of d days is derived by multiplying the
one-day VaR value by

√
d [6]. The Hurst expo-

nent has often been applied in the study and pre-
diction of the financial time series and in the classi-
fication of FOREX Securities [7]. It has been found
that periods in the foreign exchange markets with
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a large Hurst exponent are more predictable [9].
Also, in some FX Markets, the Hurst exponent
changed dynamically over time [9]. This suggests
that a time-dependent scaling exponent might help
assess the predictability and riskiness of the finan-
cial time series.

The Detrended Fluctuation Analysis (DFA) is
a popular method for estimating the statistical self-
similarity of non-stationary time series. It was first
introduced by Peng et al. [10]. Contrary to Hurst’s
Rescaled Range (R/S) Analysis [11], DFA can be
used in the presence of extrinsic non-stationarities
due to the detrending operation. The protection
against the non-stationarities is, nonetheless, dis-
puted [12]. Still, DFA performs well — as compared
to other methods — when tested against a simu-
lated series of fractional Gaussian noise and frac-
tional ARIMA(0,d,0) [2]. It has also been gen-
eralized, and extended to study multifractals [13],
or multivariate time series.

As already outlined, earlier studies suggest the
scaling exponent changes dynamically in time, and
its value is tied to the predictability of the time se-
ries. However, the traditional DFA method does
not allow for a local (point-wise) scaling analysis.
In this paper, we aim to present, study, and ap-
ply the method of obtaining the point-wise time-
dependent scaling exponent to financial time se-
ries. This method, called the Continuous De-
trended Fluctuation Analysis (CDFA), was first
proposed by Struzik [3] in 2004. As far as we
know, it has not been used yet to study the fi-
nancial time series which we do in this paper. It
has to be mentioned that there are also alterna-
tives to CDFA. For example, a similar detrend-
ing moving average (DMA) method was used to
study the time-dependent Hurst exponent H(t)
of the German market on a minute scale [14].
Another possibility to extract local scaling ex-
ponents is to use the wavelet transform based
methods [15, 16].

In our paper, we have provided the analysis of the
scaling exponent of the high-frequency (two min-
utes) S&P 500 index returns at an arbitrary scale
and time. A similar analysis for this index was done
using the wavelet transform based method [17].
In our study, a different method is used, allowing
thus the comparison of the results. To calculate the
Hölder exponents h(t), we only used the data avail-
able up to time t. In other words, we did not use
future data to calculate the scaling exponent at any
time t. Such a case would be important for eco-
nomic analysis when, for example, one is interested
in predicting future volatility, or constructing a pre-
dictor of economic crashes. Therefore, our results
can be potentially useful in practical applications.
In addition, we studied the relationship between the
estimated scaling exponent and a different measure
of volatility. In the future, those relationships might
be potentially used for building risk estimators for
various time scales.

2. Methods

To perform our analysis, we used the S&P 500 in-
dex two minute ∆t = 2 min data. First, the Index
value was transformed according to

P (t) = log
(
100SPX(t)

)
, (2)

where SPX(t) is the raw index value. The trans-
formed data is shown in Fig. 1.

To obtain the exponents at various time-scales,
we transformed the data in the following way. First,
a lagged difference of scale s was taken as in

R(t, s) = P (t)− P (t− s). (3)
As shown earlier in (2), P (t) is a logarithm thus
R(t, s) is a log return with lag s. Next, we trans-
form the log returns back to a random walk using

P (t, s) =

t∑
i=1

R(t, s). (4)

This step is important, since the Detrended Fluctu-
ation Analysis is normally done on the unbounded
process.

Now, the CDFA was performed on the index
P (t, s) data for various resolutions ε (possible win-
dow sizes). We keep the window sizes constant at
all scales, but the scale of the analyzed time series
varies. A different approach would be to keep the
scale of the time series constant and instead vary
the possible window sizes ε to extract the scaling
exponent at different scales. Obviously, the scal-
ing exponents calculated in those two approaches
are not equivalent and would be different. In this
work, we focus only on the first approach, that is,
we study how the scaling relations change when the
resolution of the underlying data changes.

The extraction of the point-wise scaling exponent
h(t, s) at a chosen scale s goes as follows:

1. Pick time t.

• Pick a window size ε, starting with εmin.
• Fit a local polynomial fn(t) of order n
on the R(t) data between (t− ε) and t.

• Calculate the mean fluctuations in the
analyzed window

F (ε) =
1

ε

t∑
i=t−ε

|R(i)− fn(i)| . (5)

2. Pick a larger window size ε + 1 and go back
to item (a) until εmax is reached.

3. Perform linear fit in log–log coordinates of
F (ε) versus ε. The slope is the point-wise scal-
ing exponent h(t).

4. Pick the next data point t = t+ 1.

For our analysis, we have chosen εmin = 50 and
εmax = 500, which correspond to windows of sizes
from 100 to 1000 min for the minimum scale
s = 1, and goes up to windows of sizes from 24000
to 240000 min for scale s = 240. It has to be under-
lined that the number of observations in a window
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Fig. 1. The plot shows the empirical two-minute
S&P 500 index transformed (with (2)) data. The
lowest point of the Black Monday crash of 1987 is
marked with the vertical line.

is independent of scale s in the current approach
and is always between 50 and 500 observations in
every scale. Different, possibly larger windows can
be used in the future. For fn(t), we have picked
a first-order polynomial.

In some cases, the linear fit in log–log coordinates
(see item No. 2 of the algorithm procedure) was very
poor, and the function was very far from linear. For
those points, we removed the outlying Hölder expo-
nents by choosing the threshold. It is defined as

χ2 =

∑n
i=1 (yi − ŷi)2

n− 2
> 0.3. (6)

The threshold value applied to remove outliers that
worked optimally in our tests is chosen to be 0.3.
If χ2 of the fit for some point (t, s) was larger
than 0.3, then the calculated exponent h(t, s) was
removed from further analysis. Note that the value
of the threshold is arbitrary. In general, a value
which is too high will cause the removal of too many
points and a threshold which is too low will fail to
correctly identify the outliers.

The algorithm we used is the left-side CDFA.
It is also possible to extract the Hölder exponent
using windows centered on the analyzed points [3].
We employed the left-side version since usually in
practical circumstances — when analyzing financial
time series and predicting volatility — the future
is not known, and a centered window could not
be used.

3. Results and discussion

Firstly, we checked if our algorithm gives correct
results on artificial data. We have generated sam-
ple paths (using R package somebm [18]), each con-
sisting of twenty thousand observations, for each of
the following Hurst exponents H = 0.3, 0.5, 0.7,
0.9. We then calculated the mean of the Hölder
exponents as described in Sect. 2 and compared
them to the known theoretical ones that were used
to generate the random walks. Indeed, the mean
exponents values h(t) = 0.31, 0.51, 0.70, 0.87 were
close to the theoretical ones. Since CDFA gives

Fig. 2. The Hölder exponent values are repre-
sented by color, with lower values going towards
red, and higher — towards yellow. The exponents
for a given scale s were calculated using the data
transformed with (4). The horizontal axis repre-
sents time from the beginning of the dataset. The
vertical axis is the scales, ranging from 1 to 240
(2 to 480 min).

point-wise exponents, their variability is quite sig-
nificant. The standard deviation was, respectively,
SD(h(t)) = 0.17, 0.23, 0.30, 0.34. Those results
could probably be further improved with a longer
sample and a larger window size εmax.

After testing the algorithm, we studied our em-
pirical data. In Fig. 1, we present the empirical
price data we used. We marked the 1987 Black
Monday crash with a vertical line. We used high-
frequency, two-minute data. In that way, we were
able to conduct the analysis, and extract the Hölder
exponents at multiple scales s. The data at various
scales were given by (4). We calculated the Hölder
exponents at scales ranging from s = 3 to s = 240.
The results are presented as a heatmap in Fig. 2.
Each point in the heatmap is a calculated Hölder
exponent at a given scale and time. White color
marks the points we removed from the analysis due
to the poor fit (as with (6)). The number of removed
points depended on the scale, but was generally low.
With the lowest number of outliers, ≈ 0.1% of our
dataset for s = 3, and the highest number of out-
liers, about 5% of data for s = 185.

No clear pattern is visible for long scales. As ex-
pected, the exponents are arranged in vertical lines
which indicate that the shocks in the time series are
visible across multiple scales. There is a shift to red
(lower h(t) values) at shorter time scales, meaning
that the returns are more volatile at shorter time
scales. However, we observe high values of h > 2
for almost all time scales. It might indicate the pres-
ence of local correlations at various times and reso-
lutions (scales). A higher scaling exponent can im-
prove the quality of forecasting methods [8]. Thus,
our method might be potentially used in the future
to build short-term (point-wise) predictors.

The shift from red to yellow as we move to
higher scales is confirmed in Fig. 3, where the time-
averaged Hölder exponent h(t) at different scales
is presented. A higher scale means that the input
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Fig. 3. The plot shows the time-averaged Hölder
exponent as a function of scale s.

Fig. 4. The Hölder exponent values are repre-
sented by color, with lower values going towards
red, and higher — towards yellow. The exponents
for a given scale s were calculated using the data
transformed with (4). The horizontal axis repre-
sents time from the beginning of the dataset. The
vertical axis is the scales, ranging from 1 to 240 (2
to 480 min). The heatmap is centered on the lowest
point of the 1987 Black Monday crash.

data is a smoother result of the transformation
defined in (3) and (4). Hence, the correspond-
ing exponents tend to be higher as the time series
smooths out. That means that the random walk
time series and its trends become more predictable
at higher scales (even though the increments prob-
ably still tend to be unpredictable). This suggests
that the unpredictability of the system is visible
only in high resolutions. In other words, looking
at it only at high resolutions (for example daily)
might give an impression that the dynamic of the
system is predictable, while at lower scales the series
remain unpredictable. Moreover, our results sug-
gest that the financial time series might be more
predictable at higher time scales where long-term
trends are visible. That is consistent with how the
evolution of stock prices is usually modeled, for ex-
ample using the Geometric Brownian Motion with
constant drift.

Next, we wanted to look further into the behav-
ior of the exponents around times of high mar-
ket stress. We present those exponents in Fig. 4

centered on the lowest point of the 1987 Black Mon-
day Crash. The heatmap unveils a characteristic
pattern of vertical lines which indicate that the
volatility of the underlying time series can be visi-
ble under many different scales. Especially, as time
approaches the Black Monday Crash, the heatmap
turns red at various scales, indicating severe irreg-
ularity and volatility of returns.

We wanted to study closer the relationship
between the volatility and the estimated Hölder ex-
ponent h(t, s) at different scales s. We used the ab-
solute log returns |R(t, s)| as the measure of volatil-
ity (absolute value obtained with (3)) since when
measuring volatility we are interested in how the
series deviates from the mean in time, and not nec-
essarily in the sign of the changes.

In Fig. 5, we presented the correlations between
the Hölder exponent h(t, s) and the absolute log
returns |R(t, s)| at various scales. One can read
therefore that the sign of the correlation changes at
some scale. The correlation is initially negative, as
expected, which indicates significant irregularity of
the time series. The correlation changes sign around
s = 205 (410 min). Increasing s means that the log
differences are taken over longer time periods, as
defined in (3). This only means that |R(t, s)| tends
to increase with s, while the time series described
with (4) itself becomes smoother. At the same time,
as shown in Fig. 3, in higher scales the Hölder ex-
ponent becomes saturated. Above s = 205, a fur-
ther increase in s does not affect h(t, s) significantly,
but |R(t, s)| will still increase. That means that in-
creasing s above 205 does not significantly smooth
the time series any further. Hence, we observe
a positive correlation between |R(t, s)| and h(t, s)
in Fig. 6.

To understand our results better, we looked at
the correlations between the Hölder exponent h(t, s)
and the log returns R(t, s) in Fig. 6. The correla-
tion is positive across all scales. It implies that on
average the prices are more likely to increase than

Fig. 5. The vertical axis shows the Pearson corre-
lation value between the Hölder exponent and the
absolute log returns at a given scale |R(t, s)| (hori-
zontal axis). The bars represent the 95% confidence
intervals.
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Fig. 6. The vertical axis shows the Pearson corre-
lation value between the Hölder exponent and the
log returns at a given scale R(t, s) (horizontal axis).
The bars represent the 95% confidence intervals.

decrease during times of low volatility (times when
the market is described by high h). It has to be
noted that the correlations are very small, but sta-
tistically significant due to the very large sample.

In both cases, the correlation of h(t, s) with log
returns R(t, s) and absolute log returns |R(t, s)| is
obviously non-linear in scale s which suggests that
the relationship between the local scaling exponent
and the scale at which we analyze the data is not
trivial. Most importantly, the correlation between
the exponent and returns has a maximum in an-
alyzed scales around s = 95 (190 min) and is in
general scale dependent. That has important impli-
cations for practical investors. Our results in Fig. 6
show that the investor should trade at the time scale
at which the predictability (measured by the corre-
lation between h(t, s) and R(t, s)) of the time series
is the highest. Our method could be helpful in iden-
tifying the optimal time scales at which the investor
is most likely to be able to predict the direction of
the prices.

Given the observed correlations of the Hölder
exponent with the absolute log returns at various
scales, this measure might be potentially used in
the future as an additional indicator of market risk.
A great advantage of the CDFA method is its speed.
However, before it could be applied in finance in
practice, much more work needs to be done. First
of all, the estimated Hölder exponent was often
above one. It is not uncommon for the DFA to find
the scaling exponents above one. It might, however,
indicate that the detrending of non-stationarities
was not entirely successful [12]. In the future, per-
haps a higher polynomial used in detrending could
be helpful. Furthermore, the most important pa-
rameters that should be investigated in the future
are εmin and εmax, the minimum and the maxi-
mum window size. It is possible that the chosen
window sizes were too small to accurately estimate
the Hölder exponent. What is more, the analysis
at various scales was done by using different lags
of returns and transforming the differences back to
a random walk (4). A different approach would be

to keep the original SPX data and instead change
the possible window sizes εmin and εmax to extract
the exponents at different scales. Those issues and
aspects could be further studied in the future.

4. Conclusions

We used the Continuous Detrended Fluctuations
Analysis to extract the point-wise Hölder exponent
from the high-frequency S&P index data at different
scales. The Hölder exponent measures the autocor-
relation of noise and can be used to measure risk.
A higher value of the exponent corresponds to more
regular functions, and low values mean that a func-
tion is more irregular. Therefore, the risk of losses
may appear to be predictable (due to high h) at
least in a point-wise fashion discussed here — the
fact probably not used to date.

The correlation showed that, on average, the es-
timated Hölder exponent was negatively correlated
with the absolute log returns, and positively corre-
lated with the returns. Interestingly, the exponent
showed saturation at higher scales and was not in-
creasing further after s = 205 (410 min), and its
correlation with the absolute log returns changed
its sign.

Our results show that since on average the expo-
nent h grows with the scale at which we look at the
data, the system may appear to be unpredictable
and uncorrelated only for the highest resolutions
(low s). It might serve as a warning against using
only low resolution data. At the same time, it is
a hint that long-term trends give information about
predictability. Finally, due to the dependence of the
predictability of the time series on scale, our method
could be used as a tool helping investors find opti-
mal time frames at which they are most likely to
make correct predictions. Of course, the practical-
ity of this approach requires further testing.
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