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It turns out that the standard application of the four-vector SR formalism does not include the concept
of relative velocity. Only the absolute velocity is described by the four-vector, and even the Lorentz
transformation parameters are described by the three-dimensional velocity. This gap in the development
of the SR formalism reflects the lack of some significant velocity subtraction operations. The differential
application of these operations leads to a relativistic acceleration.
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1. Introduction

Relative velocity is the defined difference of two
velocities. In the theory of relativity, such a differ-
ence is most easily realized using the Lorentz trans-
formation [1]:

x′ = γv(x− vt), t′ = γv

(
t− v

c2
x
)
,

y′ = y, z′ = z, (1)
where γv = 1/

√
1− v2/c2. The Lorentz transfor-

mation of velocity is some way of subtracting veloc-
ities

u′x =
dx′

dt′
=

ux − v
1− uxv/c2

=: ux 	 v, (2)

u′y =
dy′

dt′
= uy

√
1− v2/c2

1− uxv/c2
=: uy �ux

v. (3)

The component parallel to the boost velocity is
subject to the 	 subtraction, and the perpendic-
ular components are subject to the �ux

operation,
which is parameter dependent and is more like mul-
tiplication than subtraction. If we apply appropri-
ate operations for all components at the same time
(	,�ux

,�ux
) then we will get the full vector sub-

traction 	0 of the Einstein velocity [2]:

u′ =
u− v + γv

γv+1 (u× v)× v/c2

1− uv/c2
=: u	0 v.

(4)
Einstein, like many behind him (but not all [3, 4]),
considered addition, not subtraction. However,
the addition here is less natural and leads to an
unequally ambiguous sequence u⊕ v = u	0 (−v)
vs. u⊕ v = v 	0 (−u) or v ⊕ u = u	0 (−v).
The latter convention is most often used [5, 6],
which changes the right-hand character of the op-
eration to the left-hand one.

It is also worth calculating the velocity differen-
tial in relation to the velocity subject to the boost
(compare [7]):

du′x :=
∂u′x
∂ux

∣∣∣
ux=v

dux =
dux

1− v2/c2
= γ2

v dux,

(5)
du′y :=

∂u′y
∂ux

∣∣∣
uy=0

dux +
∂u′y
∂uy

∣∣∣
ux=v

duy = γv duy.

(6)
In vector terms, this equation takes the form [8]:

du′ := (du′)v :=
∂u′

∂ui

∣∣∣
u=v

dui =

γv du +
γ3
v

γv + 1

v(vdu)

c2
. (7)

It turns out that the differential calculated with re-
spect to the second variable is basically only differ-
ent in sign

(du′)u :=
∂u′

∂vi

∣∣∣
v=u

dvi =

−γudv − γ3
u

γu + 1

u(udv)

c2
. (8)

At high speeds, it is natural that the dux dif-
ferential, which is also the differential of u value,
scales as in (5) with the appropriate power of the
gamma factor [9]. Such scaling is necessary so that
the transformed speed value does not exceed the
speed of light. On the other hand, other scaling
of the perpendicular speed differential (6) results
from time dilation between transformed systems.
In [10] an attempt was made to reconcile the scal-
ing of both differentials. However, the scaling of
the perpendicular differential does not follow the
idea of an essentially directional (axial) change in
the velocity vector — an analogous discrepancy is
included in (3).
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Another disadvantage of the Einstein subtrac-
tion (4) is the lack of its antisymmetry and the
lack of associativity for the addition coopera-
tion [6, 11, 12]. As we will see, with the right ap-
proach to the Lorentz boosts, the problem of the
lack of velocity subtraction antisymmetry can be
eliminated. In a sense, the problem of lack of an-
tisymmetry also does not occur at the differential
level (7) and (8). On the other hand, the prob-
lem of the lack of velocity addition associativity is
more serious and is not covered by this paper. This
problem has been tackled in [12–14]. It should be
emphasized that the lack of associativity explicitly
concerns the velocity composition, not the Lorentz
group.

Although the four-vector approach is not consid-
ered in the SR for the velocity subtraction, let us
consider such four-velocities [15, 16]:

µµ = (γuc, γuu), νµ = (γvc, γvv). (9)
Let us try to provisionally write (2) and (3) by sub-
tracting four-velocities

µµ − νµ

µ ◦ ν/c2
=

(γuc− γvc, γuu− γvv)

γuγv (1− uv/c2)
, (10)

where µ ◦ ν = µβν
β is the scalar product of four-

vectors. Unfortunately, this formula is not valid
for the parallel component (2), although it is cor-
rect for the perpendicular component (3). Never-
theless, it turns out that (4) can be formally con-
verted into a four-vector form with the appropriate
tools (see [17, 18]). However, this paper focuses
on other (as it will turn out to be valid) meth-
ods of velocity subtraction that are ideologically
similar to (10).

2. Axial subtraction of velocities

As indicated above, the orthodox velocity sub-
traction method (4) has several natural disadvan-
tages. The most artificial is the operation of �ux

for components perpendicular to the subtrahend ve-
locity, which differs significantly from the operation
of 	 for parallel components. Therefore, we can
try to standardize the operation of 	 for all com-
ponents [5, 19]:

w|x := ux 	 v =
ux − v

1− uxv/c2
, (11)

w|y := uy 	 vy = uy 	 0 = uy, (12)

w|z := uz. (13)
If the x axis goes along v, then the above equa-
tions define an equivalent vector operation 	‖ =
(	,	,	):

u	‖ v :=
u− v + uv

v2 (u× v)× v/c2

1− uv/c2
=: w|.

(14)
This subtraction only changes the parallel compo-
nent to the velocity subtrahend, so it will be called
axial subtraction and w| relative axial velocity.

Statement 1. Axial subtraction of velocity vec-
tors (14) is of the form

u	‖ v = w| = u− ϕv, (15)

where the ϕ function results from parallel subtrac-
tion (11).
Proof. Using (11) to (15) allows to calculate

ϕ =
1− u2

x/c
2

1− uxv/c2
=

1− (uv)2/(cv)2

1− uv/c2
, (16)

which inserted into (15) after simplifications leads
to axial subtraction (14), Q.E.D.

Calculating the differentials of relative axial ve-
locity is not difficult

dw|x = γ2
v dux, dw|y = duy,

dw|z = duz. (17)

This form of differentials (which will be confirmed
later) is more general than that of (5) and (6). The
perpendicular part of the differential (6) is modified
here in a similar way as in the paper [20].

3. Binary subtraction
of 4D and 3D velocities

Most often, an ordinary operation is a bi-
nary operation. Some velocity operations de-
pend on additional parameters, for example oper-
ation (3) or ternary subtraction, discussed in the
next section. In this article, the terms “binary”
and “ternary” have the nature of proper names
borrowed from Oziewicz [17, 18] — they are ade-
quate in the case of 4D, while in 3D they are less
precise.

Consider some generalization of the four-vector
velocity subtraction (10) as a linear combination

ωµ := (µC− ν)µ := λ2µ
µ − λ1ν

µ. (18)

In order to determine the λ1, λ2 form factors,
we impose two conditions: orthogonality to the
subtrahend four-velocity and reduction of the
result to ordinary velocity for zero subtrahend
three-velocity (ui ≡ ui):

ω ◦ ν := 0, ωi(v = 0) := ui = µi/γu. (19)

These conditions with the signature + − −−
(µi = −µi) lead to the value λ1 = 1, λ2 = c2/(µ◦ν)
and the final form of the relative binary four-
velocity (see [12, 17, 19, 21]):

ωµ = (µC− ν)µ =
c2

µ ◦ ν
µµ − νµ. (20)

Statement 2. The norm of the binary subtraction
of the four-velocities (20) with the accuracy of the
sign of the signature is equal to the norm of the
Einstein subtraction (4):
||µC− ν||2 = −|u	0 v|2. (21)

Proof. The square of the binary four-vector is

ωµωµ =
c6

(µ ◦ ν)2
− c2. (22)
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The easiest way to calculate the square of the sub-
traction of velocity is in a properly directed coordi-
nate system xyz:

u′2x + u′2y =
(ux − v)2 + u2

y(1− v2/c2)

(1− uxv/c2)2
=

c2(1− uxv/c2)2 − (c2 − u2)(1− v2/c2)

(1− uxv/c2)2
, (23)

which with the opposite sign equals (22), Q.E.D.

Similarly to the dependence of the four-velocity
on the three-velocity (9) or more exact the
four-force on the three-force, we can introduce
a three-dimensional equivalent for the binary
four-velocity

ωµ = (γvwv/c, γvw) . (24)
The three-dimensional relative binary velocity [22]
(jet velocity [19]) can be expressed as follows:

w =
u− v + (u× v)× v/c2

1− uv/c2
=: u	⊥ v. (25)

At the same time, a new three-velocity subtraction
operation was introduced that is simpler than op-
erations 	0 and 	‖.

Statement 3. Binary 3D subtraction of velocity
vectors (25) is of the form

u	⊥ v = w = ψu− v, (26)
where the function ψ results from the parallel sub-
traction according to (11).

Proof. Using (11) with (26) allows to calculate

ψ =
1− v2/c2

1− uxv/c2
=

1− v2/c2

1− uv/c2
, (27)

which inserted into (26) after simplifications leads
to 3D binary subtraction (25), Q.E.D.

The above statement shows that 3D vector sub-
traction differs from the Einstein subtraction in or-
thogonal component

wy = (u	⊥ v)y = uy
1− v2/c2

1− uxv/c2
. (28)

Seemingly, the difference relative to (3) is not large
and does not seem to solve the non-intuitive prob-
lem (apart from time dilation) of scaling the per-
pendicular component. However, the problem of
this scaling disappears if the subtracted velocities
have equal components ux = v ≡ vx.

The above property is important in the compu-
tation of the 3D binary velocity differential (differ-
ential of jet velocity):

dwx :=
∂wx
∂ux

∣∣∣
ux=v

dux = γ2
v dux, (29)

dwy :=
∂wy
∂ux

∣∣∣
uy=0

dux +
∂wy
∂uy

∣∣∣
ux=v

duy = duy.

(30)
Relative 3D binary velocity differentials coincide
with axial velocity differentials as opposed to the
Einstein subtraction differentials.

4. Ternary subtraction
of 4D and 3D velocities

Based on (18) and (20), we already know
that naive subtraction of the four-velocities (10)
has little specific sense. However, we can con-
sider such a subtraction projected onto a 3D
hypersurface orthogonal to a certain reference
four-velocity σµ:

ξµ(σ) :=
(
µ4− σν

)µ
:= λPµ⊥β(σ)

(
µβ − νβ

)
. (31)

It is therefore a ternary velocity subtraction de-
pendent on the three four-velocities. The orthog-
onal projection operator has the form Pµ⊥β = δµβ −
σµσβ/c

2. In order to calculate the form factor λ
for the sake of simplicity, we will limit ourselves
to the three-dimensional approach, assuming that
σµ = (c2, 0, 0, 0). This leads to a 3D relative ternary
velocity

W := u	∧ v := λ
(
γuu− γvv

)
. (32)

The ternarity of this operation is implicitly hidden
in choice σ. Regardless of the choice of λ, this oper-
ation is not equal to any of the previously discussed.
Nevertheless, in the case of axial (parallel vectors),
a condition can be imposed on λ conforming to stan-
dard subtraction

u	∧ v := u	 v (u ‖ v). (33)
Unfortunately, the condition cannot be ex-
tended to each case for a parallel component.
The given definition condition allows, however,
to calculate

λ =
u− v(

1− uv
c2

)(
γuu− γvv

) =

(u− v)(γ−1
u + γ−1

v )(
1− uv

c2

)(
u− v + γu

γv
u− γv

γu
v
) =

γ−1
u + γ−1

v(
1− uv

c2

)(
1 + γuγv

(
1 + uv

c2

) ) =

γ−1
u + γ−1

v

1− uv
c2 + γuγv

(
1− u2v2

c2

) . (34)

We will now make a generalization of this expres-
sion for the case of any velocities, assuming that
the square of the velocity concerns the square of
the norm (u2 = u2) and the expression of the first
degree in a given velocity denotes its component
(u = ux, uv = uxv = uv). The validity of these as-
sumptions will be further confirmed in the form of
the lemma proof. Applying u2/c2 = 1−γ−2

u , we get

λ =
γ−1
u + γ−1

v

1− uv
c2 + γuγv

(
1− u2v2

c4

) =

γu + γv

γuγv
(
1− uv

c2

)
+ γ2

u + γ2
v − 1

. (35)

The covariant equivalent of this expression is

λ =
c2σ ◦ µ+ c2σ ◦ ν

c2µ ◦ ν + (σ ◦ µ)2 + (σ ◦ ν)2 − c4
. (36)
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Finally, the relative ternary four-velocity becomes
ξµ(σ) = (µ4− σν)µ =

σ ◦ (µ+ ν)
(
c2δµβ − σµσβ

) (
µβ − νβ

)
(σ ◦ µ)

2
+ (σ ◦ ν)

2
+ c2µ ◦ ν − c4

. (37)

This velocity, written differently and derived
differently, was first published by Oziewicz in
2004 [17–19]. Ternary subtraction is a generaliza-
tion of binary subtraction which is a special case
(σ = ν):

µC− ν = µ4− νν. (38)
Another special case (σi = 0) is the already intro-

duced three-dimensional ternary relative velocity

W = u	∧ v =
(γu + γv) (γuu− γvv)

γuγv
(
1− uv

c2

)
+ γ2

u + γ2
v − 1

.

(39)
This velocity, written and derived somewhat dif-
ferently, first appeared in 2012 in the Dragan [23]
lectures notes, but has not been published so
far either in the form of an article or in the
form of a preprint (except for the Polish lectures).
The poster [22] provides a visualized interpreta-
tion of the 3D ternary velocity using the so-called
laufer/bishop method. Both 4D and 3D ternary
subtractions are antisymmetric

µ4− σν = −ν4− σµ,

u	∧ v = −v 	∧ u. (40)
Other than the one-dimensional velocity subtrac-
tions considered in this paper do not have this prop-
erty — including the Einstein subtraction. The dif-
ferences do not end there.

Statement 4. Ternary 3D subtraction, with the
exception of parallel velocities, does not generally
coincide with the Einstein subtraction in the sub-
trahend direction, nor do the norms of the results
of these operations

(u	∧ v)v 6≡ (u	0 v)v,

|u	∧ v| 6≡ |u	0 v|. (41)

Proof. It is enough to indicate one example for
which the considered equations do not exist. So let
us consider perpendicular velocities with equal val-
ues: u = v = vx = uy = 0.6c. Einstein’s subtract-
ing leads to the components of the velocity vector

u′x =
0− 0.6c

1− 0× 0.6
= −0.6c, (42)

u′y = 0.6c

√
1− 0.62

1− 0× 0.6
= 0.48c, (43)

whose value is u′ ≈ 0.7684c. Whereas the compo-
nents of the 3D ternary velocity are

Wx =

(
5
4 + 5

4

)
×
(

5
4 × 0− 5

4 ×
3
5c
)

5
4 ×

5
4 (1− 0) + 52

42 + 52

42 − 1
=

−30

59
c ≈ −0.5085c, (44)

Wy =

(
5
4 + 5

4

)(
5
4 ×

3
5c−

5
4 × 0

)
5
4 ×

5
4 (1− 0) + 52

42 + 52

42 − 1
=

30

59
c ≈ 0.5085c, (45)

which gives it value W ≈ 0.7191c. Thus, neither
the x components nor the values of the considered
velocities are equal, Q.E.D.

Statement 4 would suggest that the 3D ternary
velocity is weakly anchored in the Lorentz transfor-
mation. However, nothing could be more wrong,
as shown below (see [23]).

Lemma. The Lorentz boost (the Einstein sub-
traction) with a ternary 3D velocity for a veloc-
ity, which is minuend ternary subtraction, restores
ternary subtrahend velocity

u	0 W = u	0 (u	∧ v) = v. (46)
In other words, in the above sense, 3D ternary sub-
traction is a left-inverse operation of the Einstein
subtraction.
Proof. Proving the lemma thesis is computation-

ally complicated and it cannot be done just by boost
in the x direction. A significant difficulty is calcu-
lating the Lorentz factor for velocity W :

1

γ2
W

= 1− W 2

c2
=

(
γuγv

uv
c2 + γuγv + 1

)2(
γuγv

(
1− uv

c2

)
+ γ2

u + γ2
v − 1

)2 ,

(47)
which can be written more compactly

1

γW
+ 1 = (γu + γv)λ. (48)

The main calculations can now be made

u	0 W =

1
γW

u−W + uW /c2

1+γ−1
W

W

1− uW
c2

=

Bu + Cv

1− uW
c2

. (49)

Now it is enough to calculate the coefficients B
and C:

B = −1 +

(
γv +

γ2
u − 1− γuγv uv

c2

γu + γv

)
λ = 0, (50)

C =
γv
(
γuγv + 1 + γuγv

uv
c2

)
γu
(
γu + γv

) λ = 1− uW

c2
. (51)

Based on these calculations, the value of the expres-
sion (49) is v, Q.E.D.

The ordinarily understood inverse Lorentz trans-
formation is the right-hand inverse (according to the
adopted notation convention):

u	0 v = u′ → u = u′ 	0 (−v). (52)
On the other hand, the ternary operation can be
understood as a left-inverse operation

u	0 W = v →W = u	∧ v. (53)
Like the Einstein subtraction, left-hand application
is the left-hand inverse of ternary action (46). It is
worth writing it explicitly in both orders

u	0 (u	∧ v) = u	∧ (u	0 v) = v. (54)
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To sum up, the main reason for the difference be-
tween the 3D ternary velocity subtraction from the
Einstein subtraction is the noncommutativity of ve-
locity composition (and the Lorentz group). The
impact of the lack of associative velocity composi-
tion is not directly apparent here, and the Lorentz
group is associative by definition.

The differential of the 3D ternary velocity, which
is crucial for this paper, remains to be calculated.
The ternary velocity is so homogeneous due to its
components that we can immediately calculate the
vector differential

dW :=
∂W

∂ui

∣∣∣
u=v

dui = du +
γ2
v

c2
v(vdu) =

du⊥ + γ2
v du‖. (55)

As before, the velocity differential v would only dif-
fer in sign and names of symbols. Thus, as can be
seen, the 3D ternary velocity differential is consis-
tent with the 3D axial velocity differential and the
3D binary velocity differential. This compatibility
is not accidental and reflects a class of differentially
equivalent operations to which the Einstein subtrac-
tion does not belong.

5. Relativistic 4D and 3D acceleration

We will start with the 4D approach as it will
pave the way for the main original 3D result. The
standard four-acceleration is derivative of the four-
velocity respect to self-time [16]:

αµ =
dµµ

dτ
= (α0, ~α) =(

γ4
uau/c, γ

2
ua + γ4

u(au)u/c2
)
. (56)

Despite the simple definition, four-acceleration de-
pends on the ordinary three-acceleration a in a very
complicated way. The same result can be obtained
for a binary four-velocity if we identify the sub-
tracted four-velocities after derivative calculated

αµ =
dωµ

dτ
(τ0, τ)

∣∣∣
τ=τ0

=
d
(
µ(τ)C−µ(τ0)

)µ
dτ

∣∣∣
τ=τ0

.

(57)
This is equivalent to writing the derivative defini-
tion, in which the ordinary subtraction is replaced
by a binary 4D subtraction

αµ = lim
∆τ→0

(
µ(τ0 + ∆τ)C−µ(τ0)

)µ
∆τ

. (58)

Thanks to this notation, it is clear that when cal-
culating the acceleration (or differential) from the
relative velocity, the subtracted velocities νµ and
µµ should be tending to each other.

For the ternary four-velocity, there is also the
third reference four-velocity σµ. If this four-velocity
were to take the same value as the previous two,
then the four-acceleration calculations would coin-
cide with the binary calculations. Thus, it is worth
treating σµ as the four-velocity of the independent

selected frame of reference, in which the moving
time will be measured and the acceleration calcu-
lated. Time in the inertial frame σ relative to self-
time of body with a four-velocity µµ(τ) is described
by time dilation dT = (σ◦µ/c2)dτ = dτ/λ(σ, µ, µ).
This leads to the definition of the four-acceleration
from 4D ternary subtraction:

Aµ(σ) :=
dξµ(σ)

dT
:= lim

∆τ→0

(
µ(τ0 + ∆τ)4− σµ(τ0)

)µ
∆τ/λ

=

c4(
σ ◦ µ

)2(αµ − (σ ◦ α)σµ/c2
)
. (59)

The ternary four-acceleration is thus a properly nor-
malized projection of the ordinary four-acceleration.
For σ = µ four-acceleration Aµ(σ) coincides with
four-acceleration αµ, and for σi = 0 it amounts to
a three-dimensional relativistic acceleration A —
in the same way that the 4D ternary velocity comes
down to the 3D ternary velocity.

It is time to define the 3D relativistic accelera-
tion. For definition, we need a velocity differen-
tial based on the difference of velocities, that is on
relative velocity. Apart from the ordinary subtrac-
tion, we have the Einstein subtraction and three
other methods of 3D subtraction: axial, binary, and
ternary. The Einstein subtraction leads to a veloc-
ity differential in the system of instantaneous rest
of the body, which only allows the determination
of the rest acceleration a0 = du′/dτ [19]. The rest
acceleration is not an acceleration per se, so they re-
main consistent differentials of axial, 3D binary, and
ternary velocities. This velocity differential will be
called the relativistic differential (of velocity) and
will be denoted as follows:

Du := dw| = dw = dW = du⊥ + γ2
udu‖. (60)

Statement 5. The velocity relativistic differenti-
ation operation is a differentiation operation mul-
tiplied on both sides by the gamma factor and its
inverse (on the left):

D = γ−1 × d× γ. (61)

Proof:
Du = γ−1

u d(γuu) = du + γ2
uu(udu)/c2, (62)

which is equal to (60) by virtue of (55), Q.E.D.
The key relativistic 3D acceleration for this paper

can now be defined:

A :=
Du

dt
:= lim

∆t→0

u(t+ ∆t)	∧ u(t)

∆t
, (63)

where antisymmetric ternary subtraction can be re-
placed by binary or axial subtraction. This defini-
tion leads to the formula:

A = a + γ2
uu(ua)/c2 = a⊥ + γ2

ua‖, (64)

where a = du/dt is the ordinary acceleration.
Four-acceleration can now be expressed simply by

acceleration A:
αµ = (α0, ~α) = (γ2

uAu/c, γ2
uA). (65)
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Fig. 1. Diagram showing the relations of the main
3D acceleration vectors. The new relativistic ac-
celeration A is a parallel projection of ordinary ac-
celeration a along the velocity on the direction of
force (or spatial part ~α of the four-acceleration αµ).
Thanks to this, the construction of acceleration A
is simpler than the construction of rest accelera-
tion a0.

Thanks to this, also the ternary four-acceleration
Aµ(σ) can be expressed as acceleration A. However,
this is a more complex expression that simplifies for
σi = 0:
Aµ(σi=0) = (0, A) . (66)

A graphical interpretation of (64)–(66) is shown
in Fig. 1.

6. Conclusion

It has been shown and proved through the paper
that within the Lorentz group it is possible to rea-
sonably subtract velocities in a different way than
it was established in SR. First of all, it can be done
in an antisymmetric way or in a four-vector way.
For example, the antisymmetric operation is the
left-hand reciprocal of the Lorentz boost. Veloc-
ity subtraction operations made it possible to de-
fine different 4D and 3D relative velocities. Due to
the differential equivalence of these subtraction op-
erations, unambiguous and original 3D relativistic
acceleration was introduced. This relativistic accel-
eration is important for simplifying the dynamics of
the SR [19, 22]. Whereas in this article, the rela-
tivistic acceleration has been generalized to the 4D
ternary four-acceleration.
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