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The Euler characteristic χ = |V |−|E| is an important topological characteristic of graphs and networks.
Here, |V | and |E| denote the number of vertices and edges of a graph or a network. It has been shown
in [Phys. Rev. E 101, 052320 (2020)] that the Euler characteristic can be determined from a finite
sequence of the lowest eigenenergies λ1, . . . , λN of a simple quantum graph. We will test this finding
numerically, using chaotic graphs with |V | = 8 vertices. We will consider complete (fully connected)
and incomplete realizations of 8-vertex graphs. The properties of the Euler characteristic will also be
tested experimentally using the sequence of the lowest resonances of the 5-vertex microwave network.
We will show that the Euler characteristic χ can be used to reveal whether the graph is planar or not.
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1. Introduction

The foundation of graph theory and topology was
laid in 1736 by Leonhard Euler [1] who considered
the problem of seven bridges of Königsberg. Two
hundred years later the idea of graphs was used by
Linus Pauling [2] in order to describe quantum par-
ticles moving in physical networks. Thereafter, the
theory of quantum graphs was extensively devel-
oped [3–7].

In this article, we will consider a model of a met-
ric graph Γ = (V,E) which is formed by the edges
e ∈ E connected at the vertices v ∈ V . Each
edge is an interval on the real line R having the
length le. We will consider the Laplace operator
L(Γ ) = − d2

dx2 [6] acting in the Hilbert space of
square integrable functions on Γ . We assume the
standard (Neumann or Kirchhoff) vertex conditions
imposing continuity of the function and vanishing of
the sum of outgoing derivatives at every vertex v.
Quantum graphs are used to simulate, for exam-
ple, quantum wires [8], mesoscopic quantum sys-
tems [9, 10], and optical waveguides [11].

In this article, we test numerically and experi-
mentally the recently published breakthrough re-
sults on the Euler characteristic [12], using chaotic
graphs with |V | = 8 vertices. Complete (fully con-
nected) and incomplete realizations of the 8-vertex
graphs will be considered. We will show that the
Euler characteristic χ is very sensitive to the inter-
nal structure of the graphs. The properties of the
Euler characteristic will also be tested experimen-
tally using the sequence of the lowest resonances of
a 5-vertex microwave network.

Quantum graphs can be modeled experimentally
by microwave networks [13–18]. It is possible be-
cause both systems are described by the same equa-
tions. The one-dimensional Schrödinger equation
describing quantum graphs is formally equivalent
to the telegrapher’s equation for microwave net-
works [13, 16]. Microwave networks allow for the
experimental simulation of systems corresponding
to all three classical ensembles in the random-
matrix theory (RMT): the systems with T invari-
ance belonging to the Gaussian orthogonal ensem-
ble (GOE) [13–15, 17, 19] and the Gaussian sym-
plectic ensemble (GSE) [20, 21], and the systems
without T invariance belonging to the Gaussian uni-
tary ensemble (GUE) [13, 18, 22–25].

The universality of microwave networks has sig-
nificantly extended research with systems such as
flat microwave cavities [26–38] and experiments
with the Rydberg atoms strongly driven by mi-
crowave fields [39–51] that are successfully used
in experimental modeling of complex quantum
systems.

The Euler characteristic of a metric graph
Γ = (V,E):

χ = |V | − |E| (1)
determines the number β of independent cycles in
a graph

β = |E| − |V |+ 1 ≡ 1− χ. (2)
The number β measures how different a graph is
from a tree graph and is equal to the number of
edges that have to be removed to turn the graph
into a tree.
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The total length of a graph

L =
∑
e∈E

le (3)

determines the asymptotics of the graph’s eigenval-
ues λn via Weyl’s formula

λn =
(π
L

)2
n2 +O(n), (4)

whereO(n) is a function which in the limit n→ +∞
is bounded by a constant.

From the mathematical point of view, the deter-
mination of both characteristics requires the knowl-
edge of the whole sequence of eigenvalues [52, 53].
It was proven that the whole spectrum allows one
to reconstruct the metric graph, provided that the
edge lengths are rationally independent [54–56].
This also means an affirmative answer to a ques-
tion asked by Mark Kac [57], rephrased in the case
of quantum graphs as “Can one hear the shape of
a graph?” [15].

In the real world experiments, the whole spec-
trum of an open system is usually not determinable.
In the case of microwave networks, measured at
room temperature, the openness of the systems and
the existence of intrinsic absorption cause that one
may count on measuring up to a hundred of the
lowest eigenfrequencies. Therefore, it is important
to find out whether the Euler characteristic χ can
be reconstructed directly from the spectrum of the
lowest eigenvalues without determining the exact
shape of the graph. Since the Euler characteristic
χ is an integer number (often negative), then to de-
termine it precisely it is enough to know its value
with an error ε < 1/2. Knowing that only a lim-
ited number of eigenvalues can be measured in the
experiment, we will use this criterion in our study
as a new fast converging formula [12] for the Euler
characteristic. Namely,

χ = lim
K→∞

X(t)K
∣∣
t≥t0

, (5)

where

XK(t) := 2 +

K∑
n=1;
kn 6=0

8π2 sin (kn/t)

(kn/t)
[
(2π)2 − (kn/t)

2
] . (6)

Here, kn are the square roots of the eigenenergies λn
and t0 = 1/(2lmin) with lmin denoting the length of
the shortest edge of a simple graph.

In [12], it was additionally shown that in order to
evaluate the Euler characteristic χ using (6), with
an error ε, it is enough to take the first K eigenval-
ues. Those eigenvalues can be evaluated using

K ' |V | − 1 + 2Lt0
[
1− exp

(
−πε
Lt0

)]−1/2
. (7)

The details of the proof are given in [12].

2. Numerical and experimental results

The Euler characteristic formula (6) was tested
numerically and experimentally using non-planar
8-vertex quantum graphs and planar microwave

Fig. 1. Parts (a) and (b) present the schemes of
two non-planar quantum graphs with |V | = 8 ver-
tices possessing |E| = 28 edges and |E| = 18 edges,
respectively. Part (c) shows the schemes of a mi-
crowave network planar with |V | = 5 vertices and
|E| = 7 edges. The microwave network was con-
nected to a vector network analyzer Agilent E8364B
with a flexible microwave cable which is equivalent
to attaching an infinite lead to a quantum graph. In
part (d), we show the examples of the moduli of the
scattering matrix |S(ν)| of the microwave network
measured in the frequency range ν = 1–3 GHz.

networks for which the counting function of the
number of resonances satisfies Weyl’s law [19].

In Fig. 1a and b, we present the schemes of two
non-planar quantum graphs with |V | = 8 vertices
possessing |E| = 28 edges and |E| = 18 edges with
the total lengths L = 3.916 m and L = 2.412 m,
respectively.

Figure 1c shows the scheme of the microwave
network with |V | = 5 vertices and |E| = 7 edges.
The total optical length of the network is
L = 1.494± 0.006 m and the optical length of the
shortest edge is lmin = 0.155± 0.001 m. The opti-
cal lengths lopti of the edges of the network are con-
nected with their physical lengths lphi through the
relation lopti =

√
εlphi , where ε = 2.06 is the dielec-

tric constant of Teflon used for the construction of
the SMA microwave cables.

The quantum graphs are a closed dissipationless
system for which, according to the definition of the
Euler characteristic, (6), χ = |V | − |E| = −20 and
χ = −10, respectively. The lack of dissipation is
a standard assumption considered in the mathemat-
ical analysis of graphs.

In Fig. 2 we show the approximation function
for the Euler characteristic XK(t) calculated us-
ing the first K = 563 (green full line) and K = 253
(red full line) resonances of the quantum graphs
with E = 28 and E = 18 edges, respectively.
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Fig. 2. The approximation function for the Eu-
ler characteristic XK(t) calculated for the 8-vertex
fully connected quantum graph with |E| = 28 edges
(full green line). The green curve shows the func-
tion XK(t) calculated with (6) for the first K = 563
resonances. The red full curve shows the Euler char-
acteristic XK(t) calculated for the 8-vertex quan-
tum graph with |E| = 18 edges using the first
K = 253 resonances. The black and blue vertical
marks show the values of t0 = 1/(2lmin) = 10 m−1

and t0 = 1/(2lmin) = 9.4 m−1, which were used for
the evaluation of the required number of resonances
K = 563 and 253, respectively (see (7)). The black
full line shows the expected value of the Euler char-
acteristic χ = −20 and χ = −10, respectively. The
black broken lines show the limits of the expected
errors χ± 1/4.

The values K = 563 and K = 253 were estimated
with (7) taking into account the size of the networks
Lt0 = 39.16 and Lt0 = 22.67, respectively, and as-
suming that ε = 1/4. Our calculations show that
the Euler characteristic χ is a very sensitive indi-
cator of the internal structure of the graphs, easily
differentiating graphs with E = 28 and E = 18
edges.

We applied (6) to reconstruct the Euler charac-
teristic of the quantum graphs, shown in Fig. 1a
and b, using numerically calculated spectra. The
obtained correct results are χ = −20 and χ = −10,
respectively. We also applied (6) to reconstruct
the Euler characteristic of the microwave network
in Fig. 1c. The obtained result, i.e., χ = −2,
is in agreement with the theoretical one. This
system is open but it is characterized by small
dissipation [22].

The resonances ν1, . . . , νN of the microwave net-
work required for the evaluation of the Euler charac-
teristic were determined from the one-port measure-
ments of the scattering matrix S(ν) of the network
using the vector network analyzer (VNA) Agilent
E8364B. In this case, the real part of the wave num-
ber kn is directly related to the position νn of the
resonance Re[kn] = 2π

c νn. The VNA was connected
to the microwave network using the HP 85133-616
microwave flexible cable. From the theoretical point
of view, such a situation is equivalent to attaching
an infinite lead to a quantum graph [19].

Fig. 3. The approximation function for the Euler
characteristic XK(t) calculated for the microwave
network with |V | = 5 vertices and |E| = 7
edges. The full green and red curves show the Eu-
ler characteristic calculated using (7) for the first
K = 29 and K = 100 resonances, respectively. Es-
timating the value K = 29 there was assumed
ε = 1/4 and the optical size of the network as
Lt0 = 4.82± 0.05. The blue vertical mark shows the
value of t0 = 1/(2lmin) ' 3.23± 0.02 m−1 which
was used for the evaluation of the required num-
ber of resonances K = 29 (see (7)). The black full
line shows the expected value of the Euler charac-
teristic χ = −2. The black broken lines show the
limits of the expected errors χ± 1/4.

The approximation function for the Euler char-
acteristic XK(t) (6) is shown in Fig. 3. It is eval-
uated using the first K = 29 (green full line) and
K = 100 (red full line) experimentally measured
resonances of the system. The value K = 29 was
estimated with (7) assuming that ε = 1/4 and tak-
ing into account the optical size of the network
Lt0 = 4.82 ± 0.05. In Fig. 1d, we show the modu-
lus of the scattering matrix |S(ν)| of the microwave
network with |V | = 5 measured in the frequency
range ν=1–3 GHz. Figure 3 demonstrates that the
first K = 29 resonances (green full line) are enough
to identify a plateau close to the expected value
χ = −2. The Euler characteristic calculated for the
larger number of resonances, i.e., K = 100 (full red
line), displays a much longer plateau along the ex-
pected value χ = −2. This also shows that K = 100
is an excessive number of resonances in relation to
what is needed for the practical evaluation of the
Euler characteristic.

Importantly, using (6) and (2) one can deter-
mine whether a system is planar. In the case
of the microwave network, the number of cycles
yielded from (2) is β = 1− χ = 3. According to
Kuratowski’s theorem [58], every non-planar graph
should contain K5 (the complete graph on 5 ver-
tices) or K3,3 (the complete bipartite graph on 3
and 3 vertices) as subgraphs. These graphs have
6 and 4 cycles, respectively. Therefore, we learn
that the microwave network considered in this ar-
ticle, even without seeing it, simulates a planar
quantum graph.
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3. Conclusions

We showed that the Euler characteristic χ —
an important topological characteristic of graphs
and networks — can be effectively determined by
a finite number of lowest eigenvalues. On the exam-
ples of 8-vertex quantum graphs, we demonstrated
that χ is very sensitive to the internal structure of
the graphs. The properties of the Euler character-
istic were also tested experimentally using the se-
quence of the lowest resonances of the 5-vertex non-
fully connected microwave network. We have shown
that the spectrum of a simple microwave network
also gives, through the Euler characteristic, an in-
sight into the number β = 1−χ of independent cy-
cles. Since, according to Kuratowski’s theorem [58],
the planar systems are characterized by β ≤ 3, we
used the number β of independent cycles as an inde-
pendent revealer of planar and non-planar graphs.
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