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How to Derive Subdiffusion Equations?
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Processes of normal diffusion, subdiffusion, and slow subdiffusion (ultraslow diffusion) in a one-
dimensional homogeneous system are considered, all with or without absorption of diffusing particles.
It is shown how to derive equations describing the processes. Subdiffusion equations contain the Caputo
fractional time derivative while slow subdiffusion equations contain integral operators with kernels as
slowly varying functions with respect to time. The Green functions for the equations are also presented.
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1. Introduction

Diffusion can be considered as a particle ran-
dom walk in which particle jumps are described
by the probability distributions of the jump
length λ(ρ) and the time the particle waits for
the jump ψ(τ) [1–3]. Usually, the kind of diffu-
sion is defined by the relation

〈
(∆x)2(t)

〉
∼ ξ(t).

When ξ(t) = tα we have superdiffusion for α > 1,
normal diffusion for α = 1, and subdiffusion
for 0 < α < 1. In turn, when ξ is a slowly varying
function, we have slow subdiffusion (ultraslow dif-
fusion). A slowly varying function fulfills the con-
dition ξ(au)/ξ(u)→ 1 when u → ∞ for any posi-
tive a. A slowly varying functions are combinations
of logarithmic functions or functions having finite
limit at infinity. In the case of superdiffusion, a par-
ticle can perform anomalously long jumps, for ex-
ample in a medium in which turbulence occurs. The
variation of such jump length is infinity whereas 〈τ〉
is finite. For normal diffusion, both variables ρ and
τ have finite moments. In the case of subdiffusion,
the first moment of the waiting time for a jump is
infinite whereas the moments of length of a jump are
finite. When a diffusing particle can be absorbed or
undergo irreversible chemical reactions, the proba-
bility of the particle disappearing depends on the
type of diffusion.

In the following, we consider the normal diffu-
sion, subdiffusion, and slow subdiffusion processes,
all with and without absorption. Subdiffusion oc-
curs in media in which diffusion of particles is very
hindered due to a complex structure of the medium.
For example, subdiffusion can occur when sugars
are transported in a gel [4]. Subdiffusion with ab-
sorption has been observed, e.g., when antibiotics
diffuse in a bacterial biofilm [5, 6]. The bacterial
defence mechanisms can either permanently retain
the antibiotic molecules in the biofilm or cause the
molecules to break down.

In this paper, it is shown how to derive the
equations describing the mentioned diffusion pro-
cesses, using a particle random walk model in a one-
dimensional homogeneous discrete system. The
type of diffusion is related to the appropriate choice
of the function ψ. The Green functions for the de-
rived equations are also shown. The Green function
P (x, t) is a probability density of finding a particle
at x at time t. It is the solution of a diffusion equa-
tion with the initial condition P (x, 0) = δ(x − x0),
where δ is the delta-Dirac function, x0 is the initial
location of the particle.

2. Model

We use a simple model of a particle random walk
in a discrete system. Let us consider the difference
equation describing a particle random walk in the
system

Pn+1(x) =
1

2
Pn(x−∆x) +

1

2
Pn(x+ ∆x), (1)

where Pn(x) is the probability that the particle is
in the position x performing n steps and ∆x is
the length of a particle jump. In order to move
from discrete to continuous time, we use the rela-
tion P (x, t) =

∑∞
n=0 Pn(x)Φn(t). Here, Pn(x) is

the probability that a particle, starting from x0,
reaches site x in n steps, and Φn(t) is the probabil-
ity that the particle performs n steps in the time in-
terval (0, t) [7]. The latter probability can be found
using

Φn(t) = (U ∗Qn)(t), Qi(t) = (Qi−1 ∗ ψ)(t),

Q0(t) = δ(t), (2)
i ≥ 1, where U(t) is the probability that the par-
ticle has not performed any step over a time inter-
val (0, t), Qi(t) is the probability density that the
i-th particle jump has been made at time t. The
symbol ∗ denotes the convolution of functions, i.e.,
(f ∗ g)(t) =

∫ t
0

dt′f(t− t′)g(t′).

314

http://doi.org/10.12693/APhysPolA.139.314
mailto:tadeusz.kosztolowicz@ujk.edu.pl


The 100 years anniversary of the Polish Physical Society — the APPA Originators

It is convenient to use the Laplace transform
L [f(t)] =

∫∞
0

dte−stf(t) = f̂(s) in further consid-
erations. As L [(f ∗ g) (t)] = f̂(s)ĝ(s), we can write
that Φ̂n(s) = Û(s)Q̂n(s) = Û(s)ψ̂n(s). The dif-
ference equations generating function is S(x, z) =∑∞
n=0 z

nPn(x). Combining it with the above equa-
tions leads to P̂ (x, s) = Û(s)S(x, ψ̂(s)). In the
limit of small ∆, one can use the approximation(
P̂ (x+ ∆x, s) + P̂ (x−∆x, s)− 2P (x, s)

)
/(∆x)2 ≈

∂2P̂ (x,s)
∂x2 . Now, from the definition of the generat-

ing function S(x, z), when changing z → ψ̂(s), and
from (1), we derive

ψ̂(s)
(
S
(
x, ψ̂(s)

)
− P0(x)

)
=
∂2S

(
x, ψ̂(s)

)
∂x2

.

(3)

Since S(x, ψ̂(s)) = P̂ (x,s)

Û(s)
, we get

1− ψ̂(s)

Û(s)
P̂ (x, s)− P (x, 0) =

(∆x)
2
ψ̂(s)

2Û(s)

∂2P̂ (x, s)

∂x2
.

(4)
For a given ψ̂(s) and then computing Û(s), we get
the diffusion equation given in terms of the Laplace
transform. The absorption or decay process of
a diffusing particle can be included in the func-
tion ψ̂(s) [8].

3. Diffusion without absorption

If there is no absorption of diffusing particles, the
normalization condition

∫∞
0

dtψ(t) = 1 is satisfied
leading to the condition ψ̂(0) = 1. In this case, one
has ψ̂(s) =

(
1+ v(s)(∆x)2

2D

)−1 [9, 10], where the func-
tion v(s) defines a kind of diffusion, v(s)→ 0 when
s→ 0, and D is the generalized diffusion coefficient.
We have U(t) = 1 −

∫ t
0

dt′ψ(t′). Using the formu-

lae L
[
1
]

= 1
s and L

[ ∫ t
0

dt′f(t′)
]

= f̂(s)
s , we obtain

Û(s) = 1−ψ̂(s)
s . In the limit of small ∆x, we have

ψ̂(s) ≈ 1 − v(s)(∆x)2

2D and Û(s) ≈ v(s)(∆x)2

2sD . Com-
bining (4) with the above equations, we get

v(s)

s

(
sP̂ (x, s)− P (x, 0)

)
= D

∂2P̂ (x, s)

∂x2
. (5)

The solution of (5) for the initial condition
P (x, 0) = δ(x − x0) and boundary conditions
P̂ (±∞, s) = 0 (these boundary conditions are as-
sumed for all cases considered in this paper) is

P̂ (x, s) =
1

2s

√
v(s)

D
exp

(
−
√
v(s)

D
|x− x0|

)
.

(6)
The time evolution of the mean square displacement
reads〈

(∆x)2(t)
〉

=

∞∫
−∞

dx(x− x0)2P (x, t) = L−1

[
2D

sv(s)

]
(7)

As mentioned above, the type of diffusion is de-
termined by the function v(s). For its classifica-
tion, we use moments of the fractional order of
the distribution ψ, defined as 〈τρ〉 =

∫∞
0

dττρψ(τ),
ρ > 0 [10]. These fractional moment can be calcu-
lated in terms of the Laplace transform,

L
[〈
τρ(t)

〉]
=

(−1)k

Γ k(k − ρ)k

∞∫
0

dssk−ρ−1 dkψ̂(s)

dsk
,

(8)
where k is the smallest natural number such
that k > ρ. For the moment of natural order
ρ = k, (8) takes the following form L

[〈
τk
〉]

=

(−1)k dkψ̂(s)/dsk|s=0.

3.1. Normal diffusion

Normal diffusion can be defined as a particle
random walk process in which the mean value of
the waiting time for a particle jump is finite. In
this case, one assumes v(s) = s, which provides
to the relation

〈
(∆x)2(t)

〉
= 2Dt. Knowing that

L−1
[
sP̂ (x, s)− P (x, 0)

]
= ∂P (x, t)/∂t, the normal

diffusion equation is
∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
. (9)

Next, using L−1
[

1√
s

e−
√
s|x|/

√
D
]

= 1√
πt

e−x
2/4Dt,

from (6) we get

P (x, t) =
1

2
√
πDt

exp

(
− (x− x0)2

4Dt

)
. (10)

3.2. Subdiffusion

In the subdiffusive particle random walk, there is
〈τ〉 =∞. However, there exists a positive constant
α < 1 such that fractional moments fulfill the
conditions 〈τρ〉 < ∞ for 0 < ρ ≤ α and 〈τρ〉 = ∞
for ρ > α. These relations are met when v(s) = sα,
0 < α < 1. Now, applying the following relation

L−1

[
1

sν+1

]
=

tν

Γ (1 + ν)
, (11)

into (7), where ν > −1 and Γ (1 + ν) denotes the
gamma function, we obtain

〈
(∆x)2(t)

〉
= 2Dtα

Γ(1+α) .
Using L−1

[
sαĝ(s)− sα−1g(0)

]
= ∂αCg(t)/∂tα in

(5), we obtain
∂αCP (x, t)

∂tα
= D

∂2P (x, t)

∂x2
. (12)

Here, the Caputo fractional derivative is defined
for 0 < α < 1 as

∂αCg(t)

∂tα
=

1

Γ (1− α)

t∫
0

dt′(t− t′)−α df(t′)

dt′
. (13)

Using L−1
[
sν e−as

β
]

= fν,β(t; a) [11] with

fν,β(t; a) = t−1−ν
∞∑
k=0

1

k!Γ (−ν − βk)

(
− a

tβ

)k
,

(14)
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where a, β > 0 (the function fν,β is a particular case
of the Fox H-function and the Wright function),
from (6) we get

P (x, t) =
1

2
√
D
f−1+α/2,α/2

(
t;
|x− x0|
D

)
. (15)

3.3. Slow subdiffusion

Slow subdiffusion (ultraslow diffusion) can be de-
fined as a particle random walk process in which all
positive fractional moments are infinite, 〈τρ〉 = ∞,
ρ > 0. If v(s) is a slowly varying function, ψ(s) gen-
erates the above relation [12]. The diffusion equa-
tion and the Green function depend on the spe-
cific form of v(s). To calculate the inverse Laplace
transform of the Green function, we use the strong
Tauberian theorem [13].

This Tauberian theorem states: if g(t) ≥ 0,
g(t) is ultimately monotonic as t→∞, R is
a slowly varying function at infinity and 0 < η <∞,
then each of the relations (i) ĝ(s) ≈ R(1/s)/sη

as s→ 0 and (ii) g(t) ≈ R(t)/Γ (η)t1−η as t → ∞,
implies the other. Due to this theorem, we get in
the long time limit

P (x, t) =
1

2

√
v(1/t)

D
exp

(
−
√
v(1/t)

D
|x− x0|

)
.

(16)

For example, assuming v(s) =
(
log2r(1/s)

)−1
,

r > 0, and further using L−1
[
(1/s) log2r(1/s)

]
=

µ(t, 2r − 1)/Γ (2r) [14], we obtain [15]

1

Γ (r)

t∫
0

dt′µ(t, r)
∂P (x, t′)

∂t′
= D

∂2P (x, t)

∂x2
, (17)

where µ(t, b) =
∫∞

0
dztzzb/Γ (1+z) is the Volterra-

type function [16]. In the long time limit, we get

P (x, t) =
1

2
√
D logr(t)

× exp

(
− 1

logr(t)

√
|x− x0|
D

)
. (18)

Sample plots of the Green functions for normal dif-
fusion (10), subdiffusion (15), and slow subdiffusion
(18) are shown in Fig. 1.

4. Diffusion with absorption

We can distinguish two processes that lead to the
disappearance of a diffusing particle with a proba-
bility that does not change with time. The first is
the decay of the diffusing particle A, which corre-
sponds to the reaction A → B. In this case, the
probability of the reaction does not depend on the
position of the particle. In the second process, the
particle has to meet the “absorption center” B, after
which a reaction can occur with a certain probabil-
ity. Absorption can be treated here as the reac-
tion A + B → B. Let p be the probability that

Fig. 1. The plots of Green’s function for slow sub-
diffusion are marked by r in the legend, for subd-
iffusion by α, α = 1.0 corresponds to normal dif-
fusion, the other parameters are D = 5, x0 = 0,
and t = 100; all parameters are given in arbitrarily
chosen units.

the particle will meet the absorption center after
the jump. Assuming that B are homogeneously
distributed in the system, p does not depend on
the spatial variable. For reaction A → B, there
is p = 1. Let the decay probability density of the
molecule that met B be φ(t) = γ e−γt, γ is a coef-
ficient controlling a decay process. The probability
that the molecule will not decay in the time inter-
val (0, t) is 1−

∫ t
0

dt′φ(t′) = e−γt. The probability
density ψR(t) of the particle to jump to a new po-
sition after time t depends on the probability that
the particle has not decayed by that time.

A similar remark concerns the probability UR(t)
that a particle will not change its position up to
time t. We have

ψR(t) = (1− p)ψ(t) + pe−γtψ(t) (19)
and

UR(t) =
(

1−
(
1− e−γt

)
p
)1−

t∫
0

dt′ψ(t′)

 .

(20)

Due to the formula L[e−γtf(t)] = f̂(s+ γ), we get

ψ̂R(s) = (1− p)ψ̂(s) + pψ̂(s+ γ), (21)

ÛR(s) = (1− p)1− ψ̂(s)

s
+ p

1− ψ̂(s+ γ)

s+ γ
. (22)

Change of ψ̂ → ψ̂R and Û → ÛR in (4)
and use of an approximation ψ̂R(s) ≈ 1 −
(∆x)2

2D (v(s) + v(s+ γ)) provide to

D
∂2P̂ (x, s)

∂x2
= (1− p)v(s)

s

(
sP̂ (x, s)− P (x, 0)

)
+p

v(s+ γ)

s+ γ

(
(s+ γ)P̂ (x, s)− P (x, 0)

)
. (23)
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The solution of (23) is

P̂ (x, s) =
1

2
√
D

(1− p) v(s)
s + p v(s+γ)

s+γ√
(1− p)v(s) + pv(s+ γ)

× exp

(
−
√

(1− p)v(s) + pv(s+ γ)√
D

|x− x0|

)
.

(24)
and can be obtained by means of the Fourier trans-
form method. In the time domain, one deals with

D
∂2P (x, t)

∂x2
= (1− p)

t∫
0

dt′F (t− t′)∂P (x, t′)

∂t′

+pe−γt
t∫

0

dt′F (t− t′)
∂
(

eγt
′
P (x, t′)

)
∂t′

, (25)

where F (t) = L−1 [v(s)/s] [8].

4.1. The case of p = 1

For p = 1, the probability that a particle is
at point x at time t can be obtained using the
Green function for the system without absorption
multiplied by the probability of absorption over
the time interval (0, t). In this case, the solution
reads [17]:

P (x, t) = e−γtPγ=0(x, t), (26)
where Pγ=0 is the solution in the system without
particle decay, which is given by the inverse Laplace
transform of (6).

4.2. The case of p < 1

4.2.1. Normal diffusion

For v(s) = s, (21)–(24) provide

sP̂ (x, s)− P (x, 0) = D
∂2P̂ (x, s)

∂x2
− pγP̂ (x, s),

(27)

P̂ (x, s) =
1

2
√
D(s+ pγ)

× exp

(
−
√
s+ pγ

D
|x− x0|

)
(28)

With the use of (9) and (10) (see Sect. 3.1), we can
write that in the time domain one has

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
− pγP (x, t), (29)

P (x, t) =
e−pγt

2
√
πDt

exp

(
− (x− x0)2

4Dt

)
. (30)

4.2.2. Subdiffusion

When v(s) = sα, 0 < α < 1, (23) are not really
appropriate to practical use. For this reason, we
consider (23) in the limit of small s, which corre-
sponds to the long time limit in the time domain.

Assuming s� γ, which corresponds to t� 1/γ, we
get the following approximations of (23) and (24),
respectively:

(1− p)
(
sP̂ (x, s)− P (x, 0)

)
=

s1−α

(
D
∂2P̂ (x, s)

∂x2
− pγαP̂ (x, s)

)
, (31)

P̂ (x, s) =
sα−1

2κ
√
D̃

exp

(
− κ√

D̃
|x− x0|

)

× exp

(
− (1− p)sα

2κ
√
D̃
|x− x0|

)
, (32)

where D̃ = D/(1 − p) and κ =
√
pγα/(1− p). In

the time domain, we get
∂αCP (x, t)

∂tα
= D

∂2P (x, t)

∂x2
− κ2P (x, t). (33)

P (x, t) =
e−|x−x0|κ/

√
D̃

2κ
√
D̃

f−1+α,α

(
t;
|x− x0|

2κD̃

)
.

(34)

4.2.3. Slow subdiffusion

For v(s) = ln−2r
(

1
s

)
, when r > 0, we obtain (25)

with F (t) = µ(t, 2r − 1)/Γ (2r). However, strong
Tauberian theorem cannot be applied to (24) un-
less we properly approximate (23). Such considera-
tions are rather complicated and will be presented
elsewhere.

5. Final remarks and conclusions

The methods of deriving the normal diffusion,
subdiffusion, and slow subdiffusion equations de-
scribing processes without absorption and with ab-
sorption of diffusing particles have been shown. To
derive the equations, we use the model of a particle
random walk in a discrete system. This model is
particularly useful for deriving the Green function
and membrane boundary conditions for normal dif-
fusion, subdiffusion, and slow subdiffusion in a sys-
tem with a thin membrane [18–20]. The subdiffu-
sion equations considered in this paper contain the
fractional Caputo derivative of the order α with re-
spect to time. The more commonly used form is
the fractional Riemann–Liouville derivative which
for 0 < β < 1 is defined as

dβRLg(t)

dtβ
=

1

Γ (1− β)

d

dt

t∫
0

dt′(t− t′)−βg(t′).

(35)
The subdiffusion equation reads

∂P (x, t)

∂t
= D

∂1−α
RL

∂t1−α
∂2P (x, t)

∂x2
. (36)

Both forms of the subdiffusion equation with differ-
ent fractional time derivatives are equivalent to each
other. However, the Caputo derivative has some
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properties “closer” to the “ordinary” derivative. For
example, the Caputo derivative of a constant func-
tion is zero whereas the Riemann–Liouville deriva-
tive does not have this property.

In general, there are many definitions of frac-
tional derivatives not equivalent to each other [21].
We can call the fractional derivative the operator
dependent on the continuous parameter β, which
for β = 1, 2, . . . takes the form of an “ordinary”
derivative of the natural order, but for β /∈ N
these operators may not be equivalent to each
other. The Grünwald–Letnikov fractional deriva-
tive, which can be treated as a generalization of the
limit of the differential quotient, is equivalent to
the Riemann–Liouville derivative. The Grünwald–
Letnikov derivative is most often used in the numer-
ical solving of subdiffusion equations, see for exam-
ple [22]. We mention that superdiffusion can be
described by the equation with the fractional Riesz
derivative with respect to a spatial variable.

The subdiffusion equations presented in this pa-
per are fractional parabolic equations containing at
most a first-order time derivative. However, one
can derive hyperbolic subdiffusion equations con-
taining time derivatives of the order β ∈ (1, 2]. Such
an equation can be derived using a persistent ran-
dom walk of a particle model, for which the direc-
tion of the previous particle jump is preferred in its
next jump due to the particle inertia. For example,
for normal diffusion we can assume that the flux is
lagged with respect to the gradient of P (x, t), thus
J(x, t + τ) = −D∂P (x, t)/∂x, where τ is a small
parameter given in a time unit. Approximating
the flux as J(x, t+ τ) ≈ J(x, t) + τ∂J(x, t)/∂t and
combining the above equations with the continu-
ity equation ∂P/∂t = −∂J/∂x, we get the hy-
perbolic diffusion equation τ∂2P/∂t2 + ∂P/∂t =
D∂2P/∂x2 [23]. The hyperbolic subdiffusion equa-
tion is not chosen unambiguously [24].

In practice, irrespective of the form of the hy-
perbolic subdiffusion equation, solutions to the
parabolic and hyperbolic equations in a homoge-
neous system or in a membrane system usually dif-
fer very little, such that the easier to solve parabolic
one is chosen to be used. However, there are sub-
diffusion and normal diffusion processes for which
the use of these equations gives qualitatively dif-
ferent results, even for a small parameter τ . Ex-
amples of this are: subdiffusive impedance [25] and
subdiffusion–reaction process in which the terms of
the reaction depend on the parameter τ [26].
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