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Ensembles of trapped ions can be studied using numerical simulations, which can provide reliable
data on molecular dynamics of ion sets, as well as on geometry of such ensembles in equilibrium
state. A numerical model used for such simulations is presented and discussed. This includes various
approaches to modeling the trap’s potential and cooling mechanisms. Several examples of solutions
obtained in such calculations are presented.
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1. Introduction

Trapped ions are a very important tool with nu-
merous applications in atomic physics and related
fields [1, 2]. Two most common devices used for
such studies are Penning and Paul traps. The for-
mer uses the combination of static electric and mag-
netic fields to confine charged particles in space
while the latter uses the combination of static and
oscillating electric fields. If a set of ions inside a trap
is cooled down to a sufficiently low temperature,
it can form the so-called Coulomb crystal. It is
a partially ordered 1-, 2- or 3-dimensional struc-
ture with particular ions occupying well-defined po-
sitions. This way, such ions can be used in precise
experiments of various types. A partial, short re-
view on such research was recently published by
M. Drewsen [3].

Besides experimental investigations of Coulomb
crystals, they can also be studied in numerical simu-
lations. Such calculations in some cases have a con-
siderable advantage over experiments, as they can
provide information on ion ensembles’ dynamics in
a time scale inaccessible experimentally. The molec-
ular dynamics simulations are performed by numer-
ous research groups worldwide as a complement to
experiments. In this paper, we present numerical
procedures used for such calculations by our group
in the National Laboratory FAMO in Toruń.

2. Linear Paul trap

The experiments in Toruń are run using a lin-
ear Paul trap, with calcium ions cooled optically
in a Doppler scheme [4]. Our goal for the simu-
lation is to provide calculations which reproduce
our experimental conditions in the most possibly
realistic way.

A linear Paul trap is built of a linear quadrupole,
oscillating with radio frequency of the order
of 1 MHz. Each electrode of the quadrupole is
divided into three segments, allowing to introduce
an additional static potential confining a trapped
ion’s motion along the trap’s main axis. The de-
tails of the trap’s geometry can be found in [5, 6].

2.1. Single trapped ion

The single ion’s motion inside such a trap is de-
scribed with

r̈ =
Q

M

(
Estat(r) + E0(r) cos (Ωt)

)
, (1)

where r is the ion’s position vector, Q is the ion’s
electric charge, M is the ion’s mass, Estat is the
static electric field vector, E0 is the oscillating elec-
tric field amplitude and Ω is the field’s angular fre-
quency.

Both static and dynamic fields can be expressed
using multipole expansions of corresponding static
and dynamic potentials. In the case of a linear
quadrupole trap, pure quadrupoles are a very good
approximation. Therefore, (1) can be rewritten as

ẍ =
Q

M

(
Vend

L2
+
V0 cos (Ωt)

R2

)
x, (2)

ÿ =
Q

M

(
Vend

L2
− V0 cos (Ωt)

R2

)
y, (3)

z̈ = −2
Q

M

Vend

L2
z, (4)

where R and L are the geometrical parameters of
the trap, Vend is the static voltage used between the
segments of the trap’s electrodes and V0 is the am-
plitude of the voltage used to supply the quadrupole
oscillations.
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In the case of (2) and (3), they can be written as
the Mathieu equations. The solutions are stable for
some conditions and have a form of a superposition
of two kinds of oscillations. (i) The fast oscillations
with the frequency Ω are called the micromotion
and (ii) the slower ones, called the macromotion,
are described with the effective pseudopotential [1]:

Veff(x, y, z) =

(
−QVend

2ML2
+

Q2U2
0

8M2Ω2R2

)(
x2 + y2

)
+

(
QVend

2ML2

)
z2. (5)

The potential is anisotropic, harmonic, providing
a trapping minimum in the center of the device.
Thus, the approximate equations of motion have
the form of

ẍ =
Q

M

(
Vend

L2
− QU2

0

4M2Ω2R2

)
x = −ω2

xx, (6)

ÿ =
Q

M

(
Vend

L2
− QU2

0

4M2Ω2R2

)
y = −ω2

yy, (7)

z̈ = −2
QVend

ML2
z = −ω2

zz. (8)

2.2. Set of trapped ions

If more than one ion is trapped, an additional
electrostatic interaction between particular ions ap-
pears. As they have a non-zero charge and are
usually quite well space-separated, a pure Coulomb
force is a very good approximation for such interac-
tions. This way, (2)–(4) are modified accordingly

ẍi =
Qi
Mi

(
Vend

L
+
V0 cos(Ωt)

R

)
xi +

N∑
k=1,k 6=i

QiQk
4πε0Mi

× (xi − xk)[
(xi − xk)2 + (yi − yk)2 + (zi − zk)2

]3/2 , (9)

ÿi =
Qi
Mi

(
Vend

L
− V0 cos(Ωt)

R

)
yi +

N∑
k=1,k 6=i

QiQk
4πε0Mi

× (yi − yk)[
(xi − xk)2 + (yi − yk)2 + (zi − zk)2

]3/2 , (10)
z̈i = −2

Qi
Mi

Vend

L
zi +

N∑
k=1,k 6=i

QiQk
4πε0Mi

× (zi − zk)[
(xi − xk)2 + (yi − yk)2 + (zi − zk)2

]3/2 , (11)
where i is the particular ion’s index and N is the
total number of ions. If one decides to use the pseu-
dopotential, the equations of motion will have the
form

ẍi = −ω2
xi
xi +

N∑
k=1,k 6=i

QiQk
4πε0Mi

(12)

× (xi − xk)[
(xi − xk)2 + (yi − yk)2 + (zi − zk)2

]3/2 ,

ÿi = −ω2
yiyi +

N∑
k=1,k 6=i

QiQk
4πε0Mi

(13)

× (yi − yk)[
(xi − xk)2 + (yi − yk)2 + (zi − zk)2

]3/2 ,
z̈i = −ω2

zizi +

N∑
k=1,k 6=i

QiQk
4πε0Mi

(14)

× (zi − zk)[
(xi − xk)2 + (yi − yk)2 + (zi − zk)2

]3/2 ,
where eigenfrequencies

ω2
xi

= −ω2
yi =

−Qi
Mi

(
Vend

L2
− Qi
Mi

U2
0

4Ω2R2

)
, (15)

ω2
zi = 2

Qi
Mi

Vend

L2
(16)

can be introduced as parameters to the numerical
equations of motion.

3. Doppler cooling

In the experiment, a set of ions is optically cooled
in a Doppler scheme [4]. Briefly, it uses a laser
beam, slightly red-detuned from strong optical tran-
sition in the considered ion. A photon from the laser
beam can be absorbed if the ion moves against the
laser beam. According to linear momentum conser-
vation, velocity of such an ion will be reduced in
such an event by amount

∆p =
h

λ
, (17)

where h is the Planck constant and λ is the wave-
length of the used laser light.

The ion emits another photon in spontaneous
transition which is, however, distributed over all
possible directions (not necessarily isotropic). This
means that the recoils from photons emitted in re-
peating events will average to zero, providing an ef-
fective loss of linear momentum and kinetic energy.

If the laser beam propagates along the trap’s axis
and there is only one ion trapped, such a cooling
mechanism will allow only for cooling of one degree
of freedom of the ion’s motion. In the case of more
ions, various degrees of freedom are coupled via the
Coulomb interactions, so the Doppler cooling will
provide cooling of a full motional state.

If the species cooled is calcium, then the involved
quantum states form a Λ system which requires the
use of an additional repumping laser [6]. This way,
two lasers at 397 nm and 866 nm are necessary.
Since the 866 nm P–D transition is much weaker
than 397 nm S–P (lifetime 94 ns versus 8 ns) and
longer wavelength photons carry less linear momen-
tum than the shorter ones, in the analysis only
397 nm photons are taken into account and 866 nm
interactions are neglected.
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4. Numerical simulations

The numerical simulations procedure is prepared
depending on what information we are interested
in and expect. A set of (9)–(11) or (12)–(14) can
be numerically solved depending on the needs. To
provide the Coulomb crystallization or molecular
dynamic of the ions’ set, the cooling mechanisms
must be introduced to (9)–(14).

4.1. Viscosity cooling mechanisms

A simple commonly used approach is to intro-
duce a non-physical mechanism of viscosity (e.g. the
ion trapping experiments are always run in vacuum
conditions). Such a non-physical mechanism can
be used if the effective potential model is applied.
Then, the cooling mechanism modifies (12)–(14) to
the following form:

ẍi = −ω2
xi
xi +

N∑
k=1,k 6=i

QiQk
4πε0Mi

(18)

× (xi − xk)[
(xi − xk)2+(yi − yk)2+(zi − zk)2

]3/2 − µẋi,

ÿi = −ω2
yiyi +

N∑
k=1,k 6=i

QiQk
4πε0Mi

(19)

× (yi − yk)[
(xi − xk)2+(yi − yk)2+(zi − zk)2

]3/2 − µẏi,

z̈i = −ω2
zizi +

N∑
k=1,k 6=i

QiQk
4πε0Mi

(20)

× (zi − zk)[
(xi − xk)2+(yi − yk)2+(zi − zk)2

]3/2 − µżi,

where µ is the viscosity coefficient.

4.2. Numerical procedure

The numerical simulation of N ions is realized
by solving 6N first order equations obtained from
(16)–(18) with selected parameters Qi, Mi, V0,
Vend, Ω and µ.

The used method is one of the types of the
Runge–Kutta methods. For our case, we deal with
a 4th order procedure with a fixed simulation step
size. The step size is chosen to be significantly
shorter than periods of oscillations of the ion in
trapping potential, usually about 100 times shorter.
The initial states of ions are chosen randomly, usu-
ally in the range of the expected size of an ion en-
semble at equilibrium and at room temperature.

Although such an approach provides reliable data
on the structure of the ion set in equilibrium, it
gives an unrealistic picture of molecular dynam-
ics. It also does not provide information on ions’
micromotion. However, the advantage of this ap-
proach is high efficiency — the calculation step can
be longer than the micromotion oscillation period
which means that less calculation steps are required
to reach the equilibrium.

4.3. Optical cooling mechanism

A more sophisticated but less effective approach
is to simulate momentum transfer in photon ab-
sorption from the laser beam. In such a case,
simulations are run solving (9)–(11) by using the
Runge–Kutta method with a step size much shorter
(≈ 1000 times) than the micromotion oscillation pe-
riod. For example, at Ω = 2π × 1 MHz, the step
size is ∆t = 1 ns. At each step, a stochastic ac-
tion of ion–photon interaction is randomized sepa-
rately for every ion in the set, with probability p
depending on the assumed intensity of the cooling
laser beam.

If the interaction is drawn to be true, a following
amendment to the ion’s velocity vector is made:

• Firstly, one checks whether an ion is in
a proper velocity class. Only some class of
ions can interact with photons due to atomic
transition’s natural width and the Doppler
shifting. For example, at cooling of calcium
ions (mass 40 amu), a 397 nm transition of
8 ns lifetime is used. For simplicity, less prob-
able 866 nm transitions are not taken into ac-
count. The width of the ion velocity class sen-
sitive to photons is then

∆v =
397 nm

8 ns
≈ 50

m

s
. (21)

• If the value of the z component is below ∆v,
then only in such a case the amendment proce-
dure is continued. Effectively, this means that
we assume the rectangular shape of a natural
transition line. The applied approximation al-
lows then to avoid a more complex line shape
modeling.

• If the ion is found to be a subject to opti-
cal interaction, then two changes to the ve-
locity vector are realized: one connected with
absorption of a photon from the laser beam
and one from fluorescence. Since the fluores-
cence direction is random, the direction of mo-
mentum transfer must be randomized in the
numerical procedure. In a real situation, the
distribution of such fluorescence is determined
by the polarization of the laser beam and the
presence of magnetic field due to the Hanle
effect [7]. In the simulations, the isotropic
distribution is assumed for simplicity. If we
assure this, then two numbers p1 and p2 must
be drawn from rectangular distribution rang-
ing from (0, 1). The random amendments to
velocity components are then calculated using

δẋ =
2h

λM

√
p1(1 − p1) cos (2πp2) , (22)

δẏ =
2h

λM

√
p1(1 − p1) sin (2πp2) , (23)
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δż = − 2h

λM
p1, (24)

where the maximum velocity transfer is
2h
λM ≈ 0.05 m

s .

The procedure simulating the ion–photon inter-
action can be further repeated for photons coming
from different directions, for example to simulate
more laser beams.

5. Results and summary

The simulations described above can be run in
various conditions, i.e., involving a number of ions,
their masses and charges (they may vary in the set),
a number of ions susceptible to cooling, trapping
potential shapes, depths, and frequencies. Due to
a large variety of possibilities, only several simple
examples were selected to be presented here.

The simulations were run of an ensemble of
40 ions being cooled in three different ways: a weak
optical beam, a strong optical beam and using the
approximation of effective potential and viscosity
cooling. Examples of trajectories of ions are pre-
sented in Fig. 1. Obtained equilibrium states are
presented in Figs. 2–4. All the calculations were
performed with conditions corresponding to typi-
cal experimental conditions of Ω = 2π × 6 MHz,
V0 = 800 V and Vend = 15 V.

Fig. 1. Examples of dynamics of a trapped ion
while being cooled. Part (a) represents weak optical
cooling (average interval 50 ns between photon col-
lisions). Part (b) represents strong optical cooling
(5 ns between collisions). Part (c) is a viscous cool-
ing result. All three graphs represent the z position
of one, randomly selected ion from the ensemble
of 40. It is clear that the viscous cooling is more
effective than the optical one. A stronger optical
beam allows to reach equilibrium in a shorter time.
There are some ion jumps visible for an already
cooled ion in a strong field. They can be interpreted
as a result of slower cooling of x and y degrees of
freedom which are not presented in the graph.

Fig. 2. A Coulomb crystal obtained in strong op-
tical cooling. Part (a) is a 3-dimensional picture.
Part (b) is a projection of the ions’ position along
an azimuthal coordinate. A “string of disks” struc-
ture is clearly visible in the crystal’s geometry.

Fig. 3. A Coulomb crystal obtained in viscous
cooling. Part (a) is a 3-dimensional picture. Part
(b) is a projection of the ions’ position along an az-
imuthal coordinate. A spheroidal shell structure
(two shells in this case) is visible in the crystal’s
geometry.

In all three cases, the ions formed the Coulomb
crystals, however, their dynamics were different.
The equilibrium state was achieved in a much
shorter time for viscous cooling than for the op-
tical one. Also, the cooling with a stronger opti-
cal beam intensity ensures quicker achieving of the
equilibrium.
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Fig. 4. A Coulomb crystal obtained in weak op-
tical cooling. The inset in the bottom right-hand
corner is a zoomed-out view of the crystal. It can
be noticed that two of the ions are not included in
the crystal and instead they are orbiting it in the
xy plane.

In the case of viscous cooling, the ions formed
a typically observed shell structure. To improve vis-
ibility of such a geometry, we present an azimuthal
projection of the formed crystal in Figs. 2 and 3.

In the case of optical cooling, the ions were ar-
ranged in a “string of disks” structure — similar to
the one observed in some experiments [8]. This ef-
fect may be interpreted as a result of strong optical
confinement of ions along one of the degrees of free-
dom (the z axis in this case). This, in fact, will be
the subject of our further theoretical investigations
with various directions and number of laser beams.

At weaker optical cooling, in some cases “satel-
lite ions” remain outside the formed Coulomb crys-
tal. An example of such ions is presented in Fig. 4.
The mechanism of the particles appearance is based
on the cooling efficiency in z direction only. If
an ion is sufficiently far from the trap’s center, its
x, y degrees of freedom are weakly coupled via the
Coulomb interaction with z. Hence, such “satel-
lites” effect is typically observed in experiment for
the Coulomb crystal trapping. It can be seen for
many seconds, until these ions are knocked down
for example in a collision with background gas.

6. Conclusions

There are several possible approaches to simu-
late the behavior of sets of trapped ions. Some of
them, such as the model presented in this paper,
provide more realistic solutions but are more time-
consuming. Others, such as the one using effective
potentials or a viscous mechanism of cooling, are
much more time-efficient in obtaining equilibrium,
however, they provide a less realistic mechanism of
equilibration.

The presented models of ion cooling are applica-
ble for certain experimental cases only. The viscous
one can be used whenever vacuum and temperature
conditions are sufficient for the Coulomb crystal-
lization. Also, a low micromotion amplitude (much
below the distance between ions in a crystal) is re-
quired to provide a good comparison between calcu-
lations and experiment. The simulation results will
indeed reproduce the geometry of ion ensembles in
equilibrium, however, the dynamics of equilibration
will not be well-reproduced.

The optical cooling model is applicable when the
cooling beam geometry is well-defined and interac-
tions such as ion–background gas collisions are neg-
ligible. Performing a model including such interac-
tions will be the subject of our future studies.
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