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Intriguing Problems with
Static Friction on Stage
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The phenomenon of static friction is demonstrated in some challenging situations. The work-energy
theorem and the center-mass equation are elucidated and clearly discerned when used and interpreted
in problems with static friction. Especially, it is demonstrated that it is indispensable to refer to
thermodynamics to provide a complete and adequate description of some seemingly purely mechan-
ical problems with static friction involved. The static frictional force, although being a zero-work
force, is proved to influence energy acquired by a system. Unexpected values and directions of the
static frictional forces are shown for some specific cases. Finally, it is explained how static friction
plays a crucial role in the working of a store security tag, a device commonly used at clothes shops
to prevent theft.
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1. Introduction

Static friction is a well-known and thoroughly
elaborated phenomenon. Yet, there are some the-
oretical and practical situations where static fric-
tion enters in a surprising and thought-provoking
manner. In this review paper, we want to demon-
strate some examples of such challenging problems
with static friction on stage. Especially, we point
out how — in this context — to use correctly the
center-of-mass and work-energy equations and why
and how one must engage thermodynamics in ana-
lyzing problems with static friction. We also explain
a paradox that although static friction does no
work, it can modify energy acquired by a body. It
is also surprising that static friction may enhance
acceleration caused by another force. It can be
even greater than the applied force and make the
body move (accelerate) in the direction opposite to
the direction of the exerted force. Finally, we de-
scribe how static friction, thanks to a specific pos-
itive feedback loop, is harnessed in a store security
tag, a well-known device used at clothes shops to
prevent potential thefts.

2. Mechanics meets thermodynamics

When a car accelerates, it is possible owing to the
static frictional force acting on the car. It appears
that the acquired kinetic energy is equal to the work
done on the car by the frictional force exerted by the
road, acting through the displacement of the car.
Yet, we know that the static frictional force does
no work and the kinetic energy comes from burning
of gasoline, not from the road [1].

Actually, Newton’s second law of motion for
a system of particles,∑

i

Fext,i = M
dvCM

dt
, (1)

integrated through a displacement of the center-of-
mass point, leads to the equation∑

i

∫
Fext,i · drCM = ∆

(
1

2
Mv2

CM

)
. (2)

It is called the CM (center-of-mass) equation [1, 2].
For the total static frictional force f1 +f2 acting on
the car through a displacement dCM, where f1 and
f2 represent the total forces on the rear and front
wheels (see Fig. 1), we get from (2):

(f1 + f2)dCM = ∆

(
1

2
Mv2

CM

)
. (3)

The left-hand side of this equation seems to be the
work and the right-hand side looks like the change
of kinetic energy of the car. This, however, is not
true. It is important to notice that the left-hand
side of the CM equation (2) is not the work (some
authors call it “pseudowork” [2, 3]) because in gen-
eral the displacement dri of the point of application
of the i-th force is not equal to the displacement of
the center-of-mass of the body, dri 6= drCM. In
effect,∫

Fext,i · drCM 6=
∫

Fext,i · dri ≡ work. (4)

Similarly, the right-hand side of the CM equation
does not represent the change of the kinetic energy
of the system because it involves only the center-of-
mass speed.
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Fig. 1. A car accelerating thanks to static fric-
tional forces.

In the literature [2, 4], it is emphasized that
one has to precisely distinguish between the CM
equation and the work-energy (WE) theorem [5–7].
The WE theorem can be obtained by integrating
and summing up Newton’s law equations for each
particle of the system, i.e.,

Fi = mi
dvi

dt
, (5)

which leads to∑
i

∫
Fi · dri = ∆K, (6)

where the left-hand side represents the total work
done in the system by both external and internal
forces and ∆K is the change of the total kinetic
energy of the system. The work done by external
forces in general consists of the work done by macro-
scopic forces, Wext, and microscopic forces that are
responsible for the heat transfer Q. In turn, the
work done by internal forces is equivalent to the
minus change of potential (or/and chemical) en-
ergy −∆Epot(chem) of the system. The right-hand
side of (6) can be decomposed into two terms: the
change of the kinetic energy of the center-of-mass
∆KCM and the change of internal kinetic energy
∆Kint (i.e., rotational energy or energy connected
with other forms of macroscopic internal motions of
the macroscopic parts of the system and the ther-
mal energy connected with the chaotic motion of
the system microscopic constituents). In effect, (6)
may be expressed as

Wext +Q = ∆KCM + ∆Kint + ∆Epot,chem. (7)
Typically, the above equation is presented in a lim-
ited form (without the term ∆Epot,chem) and has
different names: it is called the energy equation [1]
or the first law of thermodynamics [3, 8, 9] or just
the extended work energy theorem [10]. The left-
hand side of (7) represents the net external inputs
to the system and the right-hand side is the change
in the system energy. However, no author explains
that (7) can be derived from the basic form of
the work-energy theorem (6) obtained directly from
Newton’s law of motion — as it is shown in this
paper. The derivation shows, in fact, how mechan-
ical problems are in a natural way interconnected
with the thermodynamical aspects of physical pro-
cesses. This fact manifests itself particularly clearly
in problems with static friction.

Let us come back to the example with the accel-
erating car, where there is no work done by exter-
nal forces. The WE equation given by (7) can be
brought to the following form [1]:

Q = ∆

(
1

2
Mv2

CM

)
+ ∆Kint,macro

+∆Kint,thermal + ∆Echem, (8)
where Q is the net heat transfer into the car from
the surroundings (it is mainly the negative heat
transfer from the hot engine to the air). Next,
∆Kint,macro represents the increased energy of mo-
tion of the internal parts of the car (engine, wheels),
∆Kint,thermal is associated mainly with the temper-
ature rise of the engine and ∆Echem is the (neg-
ative) change in chemical energy that pays for all
the other terms.

Another instructive example of the correct use of
the CM equation and WE theorem is the case of
a climber who slowly inches up a vertical cliff, with
a constant velocity (see Fig. 2) [1]. Let us assume
that the climber is the system of interest. The CM
equation then takes the form of

(f1 + f2 −Mg)dCM = 0 (9)
and the WE theorem is given by
−MgdCM −Qloss = ∆Echem. (10)

The static frictional forces f1 and f2 do no work
since there is no slippage at the point of contact be-
tween the climber and the cliff. The nonzero inputs
to (10) come from the negative work done by the
external force Mg and the negative heat transfer
to the air Qloss. The change in the energy of the
system is the (negative) change of chemical energy
∆Echem burnt by the climber.

Notice that there is no change of the gravita-
tional potential energy ∆Epot of the climber on
the right-hand side of (10). Considering the in-
troduction of ∆Epot into (10), we would make
a double-entry mistake. Notice that the energetic
contribution of the gravitational force Mg is al-
ready taken into account by the term −MgdCM on
the left-hand side of (10). This term indeed repre-
sents the work done by the force Mg. Therefore,
the frequently heard statement in this context that
“the climber does the work to increase his gravita-
tional potential energy” is wrong. No work is done
by the climber and no increase of potential energy

Fig. 2. A climber moves up a vertical cliff with
a constant velocity.
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appears in (10). The term Mg should be then
treated as an external force and not as a force of
a field with a potential energy defined.

It is instructive to notice that if we take as the
system of interest both the climber and the Earth,
then there are no inputs in the WE theorem for
such a system, i.e., the left-hand side of (7) is zero.
Especially, the gravitational force cannot be treated
now as an external one. All the terms appear on the
right-hand side of (7) as the change of the energy
of the system: +MgdCM is the increase of the po-
tential energy ∆Epot connected with the enlarged
separation between the climber and the Earth and
+Qloss represents the increased thermal energy in
the atmosphere. To avoid mistakes in using the WE
theorem, one must then be clear about the choice
of the system [1].

3. Paradox of zero-work forces

Some forces do no work because they are perpen-
dicular to the displacements dri or their displace-
ments dri are zero, as it is for the static frictional
forces. In the WE equation (6), the terms with
forces that do no work (zero-work forces) can be
omitted. In effect, we have∑

i

∫
dri · wFi = ∆K, (11)

where wFi denotes forces doing nonzero work.
The result might suggest that the zero-work forces
do not contribute to the change of the system
energy. On the other hand, however, all forces
in (2) (the CM equation), including the zero-work
ones 0Fi, are important and cannot be neglected.
Thus, the CM equation shows directly that the zero-
work forces do influence the change of the system
velocity vCM, so consequently also the change of the
kinetic energy acquired by the system [11].

To reconcile (2) and (11), one has to notice that
the zero-work forces, contrary to appearances, ac-
tually are in general present in a veiled manner
in (11) and determine the energy achieved by the
body. Namely, through Newton’s law of motion the
zero-work forces influence velocities vi acquired by
the system points to which the working forces wFi

are applied. In this way, they modify the displace-
ments dri = vidt and affect the work

∫ w
Fi · dri

done by the “working” forces.
To be more formal, we can write

vi =

t∫
0

dt′ai(t
′) =

1

mi

t∫
0

dt′
[
wFi(t

′) + 0Fi(t
′)
]
,

(12)
where we have assumed that the velocity equals zero
at t = 0. Then, the work Wi =

∫
dt(wFext,i · vi)

done by the force acting on the i-th point is

Wi =
1

mi

∫
dt wFi ·

 t∫
0

dt′
(
wFi(t

′) + 0Fi(t
′)
) .
(13)

Fig. 3. A body on a slope is pulled by a force wF
(e.g., its weight). The zero-work slope reaction force
0F influences the orientation of the vector (v) and
therefore the orientation of dr at the consecutive
moments which has an impact on the work done by
the force wF , according to (13).

This result explicitly shows that the zero-work
forces are actually involved in the process of work.
Furthermore, this conclusion refers even to a system
consisting of a single particle (see Fig. 3).

In some cases, the zero-work forces are explicitly
present in the WE theorem (6) (not only implic-
itly through the displacements dri) and cannot be
removed from the description of the physical situa-
tion. However, the status of their “explicit” presence
differs from (13). For example, for a rigid body, it is
convenient to write the displacements dri as

dri = drCM + dr′i, (14)
where drCM is the displacement of the center of
mass of the body and dr′i is the displacement with
respect to the center of mass. Although 0Fi · dri is
zero, the products 0Fi · drCM and 0Fi · dr′i in gen-
eral are nonzero, thus the terms with the zero-work
forces cannot be omitted

W =
∑
i

∫
Fi · dri =

∑
i

∫
Fi · drCM +

∑
i

∫
Fi · dr′i. (15)

Then, the WE theorem for a rigid body is [11]:∫
dtF · vCM +

∫
dtM ′ · ω =

∆

(
1

2
Mv2

CM

)
+ ∆

(
1

2
Iω2

)
, (16)

where the total external force F and the total
torque M ′ include both the “working” and the
zero-work forces. For example, for a cylinder
rolling without slippage when pulled by a force F
(see Fig. 4), assuming it was initially at rest, we
have from (16) that

(F − Fs)s + (F + Fs)Rθ =
1

2
Mv2

CM +
1

2
Iω2,

(17)
where s =

∫
dtvCM is a displacement of the center

of mass and θ =
∫

dtω is the angle of rotation of
the cylinder. Because the rolling proceeds without
slipping, we have Rθ = s and — as expected —
the terms with the static friction Fs cancel out.
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Fig. 4. A cylinder moving on a rough surface with-
out slippage in the presence of a static frictional
force Fs.

Fig. 5. A block pulled by a force F remains at rest
due to a static frictional force Fs precisely compen-
sating the force F .

In fact, the zero-work forces influence the work
only implicitly by modifying the displacements dri,
as shown in (13). In our example, the total dis-
placement of the force application point is equal to
(i) 2s in the presence of static friction and (ii) 3s
for the case of motion on a perfectly smooth surface
(no friction).

4. Direction and value
of static frictional force

Based on typical physical situations, we are al-
ready accustomed that the static friction is oppo-
site to the applied force and, in a sense, it hin-
ders its action. For example, if a block which lays
on a rough surface is pulled by a relatively small
force F , it remains at rest as long as a static fric-
tional force Fs, acting in the opposite direction, bal-
ances the force F (see Fig. 5). Or, if a cylinder or
a ball moves down an incline without slippage, then
the static frictional force is opposite to the force
mg sin(α) acting along the slope (see Fig. 6).

One would expect, in analogy to the case pre-
sented in Fig. 4, that as the force F is pointing to
the right, the static frictional force is oriented to
the left. Surprisingly, however, the direction of Fs

is wrongly marked in Fig. 4. Solving the stan-
dard equations of motion for a cylinder pulled at
a height h by a force F (see Fig. 7), we find that
Fs acts in the same direction as the force F when
h > 3

2R [12]. In Fig. 4, Fs should then be pointed
to the right. One could say that in this case the
static friction helps the force F in accelerating the
cylinder. It would only mean that the acceleration
is greater in the presence of static friction, as com-
pared to a motion on a perfectly smooth surface.
For h = 2R, the acceleration of the rolling cylin-
der is a = 4

3F/M , while for the cylinder sliding on
a smooth surface it is simply a = F/M .

Fig. 6. A cylinder moves down a slope. Static fric-
tion Fs is opposite to the pulling force mg sin(α).

Fig. 7. The correctly indicated static frictional
force Fs for a cylinder pulled by a force F applied
at height h > (3/2)R.

Fig. 8. A spool pulled by a force F at an angle α.
For α satisfying the relation cos(α) < r/R, the
static frictional force Fs is greater than the hori-
zontal component F cos(α) and the spool starts to
move to the left.

One can encounter another surprise by analyzing
the motion without slippage of a spool pulled by
a force F through a thread inclined with an angle α
(see Fig. 8). From the equations of motion we find
that the acceleration along the x direction is

a = F
cos(α)− r

R

m+ I
R2

, (18)

where m is the mass and I denotes the moment of
inertia of the spool. For α fulfilling the inequal-
ity cos(α) < r

R , the acceleration is negative which
means that the spool, being initially at rest, starts
to move in the direction of the negative values on
the x-axis. This, in turn, reflects the fact that the
static frictional force Fs unexpectedly appears to
be greater than the horizontal component F cos(α)
pulling the spool to the right. In other words, in this
case, Fs not only hinders the action of the applied
force but is able to dominate it and significantly
influence the direction of the spool motion.
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5. Store security tag

In this section, we want to demonstrate and ex-
plain a surprising behavior of a store security tag.
Its mechanical operating principle is based on a spe-
cific positive feedback loop referring to static fric-
tion [13]. A security tag, widely used in shops for
preventing theft of clothes, is a very simple device
(see Fig. 9). Such a tag is attached to each garment
with a pin. The pin passes through a bucket-like
steel container and is placed between steel balls that
press the pin thanks to a spring pushing the balls
through a guide. All the parts are kept in place
in a hard plastic container whose shape resembles
UFO. While there is no problem with introducing
the pin into the tag, it is practically impossible to
remove it with your hands even if you use enormous
force. Since each tag is equipped with an antenna,
the alarm is triggered when one tries to leave the
shop carrying a garment with the tag attached to
it. The electronic part of the device, however, is out
of scope of our presentation.

To understand the asymmetric behavior of the
pin, one has to identify forces acting on the parts
placed inside the tag. On the basis of Fig. 10, one
can find the expression for the maximum static fric-
tional force acting on the pin when one tries to re-
move it from the tag

T1 max = µN1 = µ

[
F cot(α) +

1 + cos(α)

sin(α)
T1

]
,

(19)
where µ is the coefficient of static friction, N1 is
the normal force exerted upon the ball by the pin,
F is the force produced by the guide connected to
the spring and α is the angle at which the walls of
the bucket are deviated from the right angle. When
an external force Fext is applied to the pin, a static
frictional force T1 starts to act on the pin due to its
contact with the balls. In order to remove the pin
from the tag, i.e., to cause its slipping on the balls,
the force Fext must exceed the maximum static fric-
tion given in (19). Note that Fext is always equal to
T1. The problem, however, is such that T1 max de-
pends on T1 and in practical realizations of the tags
the angle α satisfies the following relation:

tan
(α

2

)
≤ µ. (20)

Therefore, Fext (= T1) can never be greater
than T1 max. The greater the force Fext, and re-
spectively the static frictional force T1, the greater
T1 max (positive feedback loop) and no slippage is
possible. In such a situation, the pin is firmly stuck
in the tag.

In general, to remove the pin from the tag, shop
assistants use strong external magnets. The mag-
net acts on the steel balls with forces greater than
F and in this way removes, or makes negligible,
the normal force N1 exerted by the balls on the
pin. In effect, no friction is possible and the pin
is released.

Fig. 9. The internal structure of a security tag.
©European Physical Society. Reproduced by per-
mission of IOP Publishing. All rights reserved..

Fig. 10. Forces acting on a pin and a ball while
one tries to pull the pin out of a tag. ©European
Physical Society. Reproduced by permission of IOP
Publishing. All rights reserved..

For the process of inserting the pin into the tag,
the second term in (19) is negative and there is al-
ways such a value of Fext (= T1) that it becomes
equal to and further greater than T1max. Such
a case is equivalent to the sliding of the pin on the
ball surface. Accordingly, there is no problem with
introducing the pin into the device.

It appears then that the inconspicuous static fric-
tion phenomenon may play an essential role in such,
after all, intelligent devices as security tags.

6. Conclusions

Static friction appears to be a demanding phe-
nomenon when one wants to use it correctly in the
context of the WE theorem and the similarly look-
ing CM equation. Unexpectedly, thermodynamic
aspects of physical processes must be taken into ac-
count. Another feature of static friction is that al-
though it does no work, it actively influences energy
acquired by a system. The direction and value of
static friction for rolling objects is also nontrivial
and sometimes counterintuitive. Finally, we have
shown how static friction is the basis on which
store security tags work. We believe that physi-
cal problems with static friction involve interesting
physics related to a fairly wide range of our every-
day life experience. By analyzing these problems,
the physical reality can be found more intriguing
and — at the same time – it is better clarified and
understood.
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