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We have reported the energies and transition parameters for allowed transition (electric dipole, E1),
and forbidden transitions (electric quadrupole, E2, and magnetic dipole, M1) for quadruply ionized
radon (Rn V, Z = 86) for energetically low lying levels. The present results were performed using
two independent computational strategies of the Hartree–Fock calculation with relativistic corrections
and superposition of configurations (Cowan’s HFR method) and the general-purpose relativistic atomic
structure package based on the fully relativistic multiconfiguration Dirac–Fock (MCDF) method. We
have compared our results with the results available in the literature to assess the accuracy of the
data. We predict that new energy levels and transition parameters, where no other experimental or
theoretical results are available, will form the basis for future experimental work.
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1. Introduction

The spectrum of noble gases is of interest for
many physics areas, for example, laser physics, fu-
sion diagnostics, photoelectron spectroscopy, col-
lision physics, astrophysics, etc. [1]. Particularly
for the ionized noble gases, the importance of re-
liable values of oscillator strengths is well known
for the plasma diagnostics, determination of stel-
lar abundance and atmosphere modeling, laser
physics, etc. [2].

Radon is a radioactive noble gas element, which
is obtained by radioactive disintegration of ra-
dium, while all other noble gases are present in
atmosphere. Radon is also useful in the cancer
treatment because it is radioactive in nature [3].
The quadruply ionized radon (Rn V) belongs to
the Pb isoelectronic sequence. Its ground state
is 6s26p2 3P0. There is less spectroscopic litera-
ture concerning Rn V than the neutral or other
ionized species, namely there are only two stud-
ies. Chou et al. [4] presented oscillator strength
of 6s26p2 3P0–3P1 magnetic-dipole (M1) transition
using the multiconfiguration relativistic random-
phase approximation (MCRRPA) theory. Later,
Biémont and Quinet [5] reported transition prob-
abilities and oscillator strengths of M1 and electric-
quadrupole (E2) transitions among 6s26p2 levels.
For Rn V, there has not been any study on al-
lowed transition parameters. Data on energies,

electric-dipole (E1), E2 and M1 transitions for
this ion have been presented for the first time
in this work.

The aim of this paper is to obtain atomic data
for quadruply ionized (Rn V Z = 86) using the
relativistic Hartree–Fock (HFR) code [6] and the
general-purpose relativistic atomic structure pack-
age (GRASP) code [7]. We have reported relativis-
tic energies and the Landé g-factors for the levels of
6s26p2, 6s26p nd (n = 6–10), 6s26p ns (n = 7–10),
6s26p nf (n = 5–10), 6s26p np (n = 7–10), 6s26p nh
(n = 6–10), 6s26p ng (n = 6–10) and 6s26p ni
(n = 7–10) configurations and the transition
parameters, such as the wavelengths, oscillator
strengths and transition probabilities, for E1, E2
and M1 transitions between excitation levels
in Rn V. Calculations have been carried out by the
HFR method [8] and the GRASP atomic structure
package based on the fully relativistic multiconfig-
uration Dirac–Fock (MCDF) method [9]. The HFR
method considers the correlation effects and rela-
tivistic corrections. For valence excitations, we have
only taken into account the configurations including
one electron excitation from valence (6p orbital)
to other subshells: 6s26p2, 6s26p nd (n = 6–10),
6s26p ns (n = 7–10), 6s26p nf (n = 5–10), 6s26p np
(n = 7–10), 6s26p nh (n = 6–10), 6s26p ng
(n = 6–10) and 6s26p ni (n = 7–10) configura-
tions outside the core [Xe]4f145d10 in Rn V for
the HFR calculation.
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The Breit interactions (magnetic interaction be-
tween the electrons and retardation effects of the
electron–electron interaction) for relativistic effects,
quantum electrodynamical (QED) contributions
(self-energy and vacuum polarization) and corre-
lation effects (valence–valence (VV), core–valence
(CV) and core–core (CC)), which are important
for electronic structure and spectroscopic proper-
ties of many electron systems, are included in the
MCDF method. In the MCDF calculation, various
configurations have been considered for correlation
effects. More and more electron correlations have
been progressively included in the calculation. For
a VV correlation, only one electron outside 6s26p
is considered in the calculation. In a CV correla-
tion, effects are added by including single excita-
tions from the 6s and 6p subshells, while a CC elec-
tron correlation contributions are considered with
double excitations from 6s [10]. Thus, we have
taken into account 6s26p2, 6s26p nd (n = 6, 7),
6s26p ns (n = 7, 8), 6s26p5f , 6s26p np (n = 7, 8),
6p4, 6s6p7d2, 6p27s2, 6s6p5f2, 6s6p8s2, 6p26d2 and
6s6p8p2 configurations according to the CC correla-
tion. In this calculation, the closed shells of this ion
are 1s22s22p63s23p63d104s24p64d104f145s25p65d10.

2. Calculation methods

The relativistic Hartree–Fock method developed
by Cowan (Cowan’s HFR method) [8] and the fully
relativistic MCDF method developed by Grant [9]
are applied, which has been successfully done in our
previous works [11–20], to perform these large-scale
calculations. Since a detailed explanation of these
methods has been presented in [8, 9], consequently
only a brief outline is discussed here.

In the HFR method [8], for N -electron atom of
nuclear charge Z0, the Hamiltonian is expanded as

H = −
∑
i

∇2
i −

∑
i

2Z0

ri

+
∑
i>j

2

rij
+
∑
i

ζi(rij)li · si (1)

with ri — the distance of the i-th electron from the
nucleus and rij = |ri − rj |. Distances are measured
in the Bohr units [a0] and all energies are measured
in the Rydberg units [Ry]. The spin–orbit term
(in Ry) is ζi(R) = α2

2
1
r

(
∂V
∂r

)
, with α being the fine

structure constant and V — the mean potential
field due to the nucleus and other electrons. The
wave function |γJM〉 of the M sublevel of a level
labeled γJ is expressed in terms of LS basis states
|αLSJM〉 by
|γJM〉 =

∑
αLS

|αLSJM〉〈αLSJ |γJ〉 (2)

In the MCDF method [9], an atomic state can be
expanded as a linear combination of configuration
state functions (CSFs):

Ψa(PJM) =

nc∑
r=1

Cr (α) |γr (PJM)〉, (3)

where nc is the number of CSFs included in the
evaluation of atomic state functions and Cr is the
mixing coefficient. The CSFs are the sum of prod-
ucts of single-electron Dirac spinors

φ(r, θ, ϕ, σ) =
1

r

(
P (r)χκm(θ, ϕ, σ)

iQ(r)χ−κm(θ, ϕ, σ)

)
, (4)

where j = |κ| − 1/2 is the relativistic angular
quantum number (note that κ = ±(j + 1/2) for
l = (j ± 1/2)) and χκm is the spinor spherical har-
monic in the LSJ coupling scheme and P (r) and
Q(r) are the large and small radial components of
one-electron wave functions represented on a loga-
rithmic grid.

The energy functional is based on the Dirac–
Coulomb Hamiltonian for an N -electron atom in
the form

HDC =

N∑
j=1

(
cαj · pj + (βj − 1)c2 + V (rj)

)

+

N∑
j<k

1

rjk
, (5)

where V (rj) is the electron–nucleon interaction and
c is the speed of light.

3. Results and discussion

In this paper, we have calculated the relativistic
energies and the Landé g-factors for the levels of
6s26p2, 6s26p nd (n = 6–10), 6s26p ns (n = 7–10),
6s26p nf (n = 5–10), 6s26p np (n = 7–10), 6s26p nh
(n = 6–10), 6s26p ng (n = 6–10) and 6s26p ni
(n = 7–10) configurations and the transition param-
eters (wavelengths, oscillator strengths and transi-
tion probabilities) for E1, E2 and M1 transitions
between low-lying levels in Rn V using the HFR [6]
and GRASP [7] codes. The configuration sets se-
lected for investigating correlation effects have been
given in Sect. 1. The results in this work are given in
Tables I–II and compared with the available data.
Odd-parity states only are indicated by the super-
script ’o’. References for other comparison values
are typed with a superscript lowercase letter. Also,
the new results of this work are given in the supple-
mentary material [21] in Tables SI, SII and SIII.

We have presented our calculations using the
RCN, RCN2, RCG and RCE chain of programs de-
veloped by Cowan [8]. The HFR option of the RCN
code was used to derive initial values of the param-
eters with appropriate scaling factors in the RCN2
code. The RCE can be used to vary the various
radial energy parameters Eav, F k, Gk, ζ, and Rk

to make a least-squares fit of experimental energy
levels by an iterative procedure. The resulting least-
squares fit parameters can then be used to repeat
the RCG calculation with the improved energy lev-
els and wave functions [8].

In the HFR calculation, the Hamiltonian cal-
culated eigenvalues were not optimized to the
observed energy levels via a least-squares fitting
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TABLE IEnergies E and Landé g-factors for low-lying levels in Rn V.

Levels E [cm−1] g-factor

Conf. Term HFR MCDF
Other
works

HFR

6s26p2 3P0 0.00 0.00 0.00 0.00
6s26p2 3P1 34797.18 33018.87 33979a 1.501

33796b

6s26p2 1D2 39964.11 39760.17 39449a 1.215
6s26p2 3P2 79131.41 77353.40 77700a 1.286
6s26p2 1S0 92928.29 91966.63 91852a 0.00
6s26p(2P )6d 3F o

2 167825.09 165683.16 – 0.754
6s26p(2P )6d 3F o

3 178877.88 177519.38 – 1.118
6s26p(2P )6d 3Do

2 178976.89 178396.12 – 1.259
6s26p(2P )6d 3Do

1 180016.22 180373.46 – 0.824
6s26p(2P )6d 3F o

4 213642.51 210441.33 – 1.251
6s26p(2P )6d 1Do

2 213732.79 211266.62 – 0.998
6s26p(2P )6d 3Do

3 217777.99 216847.25 – 1.222
6s26p(2P )6d 3P o

0 219373.89 218859.10 – 0.00
6s26p(2P )6d 3P o

1 219564.28 219383.50 – 1.197
6s26p(2P )6d 3P o

2 221127.21 221002.27 – 1.323
6s26p(2P )6d 1P o

1 227834.29 241377.31 – 1.106
6s26p(2P )6d 1F o

3 231175.19 234934.46 – 1.078
6s26p(2P )7s 3P o

0 186968.69 183842.06 – 0.00
6s26p(2P )7s 3P o

1 188205.80 184794.35 – 1.327
6s26p(2P )7s 3P o

2 230374.10 226887.30 – 1.501
6s26p(2P )7s 1P o

1 238188.89 225469.92 – 1.047
6s26p(2P )5f 3G3 194823.89 198489.63 – 0.831
6s26p(2P )5f 3F3 199932.08 239307.18 – 1.172
6s26p(2P )5f 3G4 201206.70 249150.52 – 1.100
6s26p(2P )5f 3F2 201408.50 208371.03 – 0.838
6s26p(2P )5f 1F3 235314.29 – – 0.959
6s26p(2P )5f 3F4 237575.70 329733.07 – 1.169
6s26p(2P )5f 3G5 238184.08 331529.04 – 1.200
6s26p(2P )5f 3D3 240729.51 287545.52 – 1.205
6s26p(2P )5f 3D2 241050.49 247131.95 – 0.991
6s26p(2P )5f 3D1 243180.70 249087.16 – 0.499
6s26p(2P )5f 1G4 248885.77 – – 1.031
6s26p(2P )5f 1D2 251185.31 333967.05 – 1.009
6s26p(2P )7p 3D1 221668.81 217082.45 – 0.667
6s26p(2P )7p 3P0 227110.57 223597.46 – 0.000
6s26p(2P )7p 3S1 235390.88 230816.10 – 1.466
6s26p(2P )7p 3D2 235701.11 231418.18 – 1.171
6s26p(2P )7p 3P1 267811.31 262941.48 – 1.364
6s26p(2P )7p 1D2 268521.29 264195.19 – 1.205
6s26p(2P )7p 3D3 277722.76 272553.01 – 1.333
6s26p(2P )7p 1P1 278427.01 273739.78 – 1.505
6s26p(2P )7p 3P2 281133.31 276733.14 – 1.283
6s26p(2P )7p 1S0 286972.20 283746.47 – 0.000
6s26p(2P )8s 3P o

0 287829.08 281890.56 – 0.000
6s26p(2P )8s 3P o

1 288334.50 282250.17 – 1.324
6s26p(2P )8s 3P o

2 332286.10 326266.89 – 1.488
6s26p(2P )8s 1P o

1 333704.09 326578.22 – 1.047
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TABLE I (cont.)

Levels E [cm−1] g-factor

Conf. Term HFR MCDF
Other
works

HFR

6s26p(2P )8p 3D1 303982.02 298373.22 – 0.665
6s26p(2P )8p 3P0 306193.09 302714.12 – 0.00
6s26p(2P )8p 3S1 310163.50 304976.05 – 1.487
6s26p(2P )8p 3D2 310385.07 305530.60 – 1.171
6s26p(2P )8p 3P1 349070.07 343386.13 – 1.380
6s26p(2P )8p 1D2 349638.59 344193.37 – 1.212
6s26p(2P )8p 3D3 354141.07 348167.79 – 1.333
6s26p(2P )8p 1P1 354360.32 348651.46 – 1.474
6s26p(2P )8p 3P2 355167.82 350446.39 – 1.283
6s26p(2P )8p 1S0 357812.99 355503.00 – 0.00
6s26p(2P )7d 3F o

2 283557.18 278004.88 – 0.768
6s26p(2P )7d 3Do

1 286076.21 – – 0.828
6s26p(2P )7d 3P o

2 286445.53 281888.70 – 1.277
6s26p(2P )7d 3F o

3 287109.37 283410.08 – 1.118
6s26p(2P )7d 1Do

2 327857.90 321879.32 – 0.981
6s26p(2P )7d 3Do

3 328897.67 323625.73 – 1.188
6s26p(2P )7d 3F o

4 329506.93 323810.18 – 1.250
6s26p(2P )7d 3P o

1 329557.72 324749.22 – 1.087
6s26p(2P )7d 3Do

2 330185.54 – – 1.320
6s26p(2P )7d 3P o

0 330186.49 325743.63 – 0.000
6s26p(2P )7d 1F o

3 331914.61 329761.37 – 1.117
6s26p(2P )7d 1P o

1 332126.49 332666.64 – 1.194
aRef. [5], bRef. [4]

procedure using experimentally determined energy
levels (in RCE) since the experimentally determined
energy levels are not available in the literature for
Rn V. The scaling factors of the Slater parame-
ters (F k and Gk) and of configuration interaction
integrals (Rk), not optimized in the least-squares
fitting, were chosen as equal to 0.75 for calcula-
tion, while the spin–orbit parameters were left at
their initial values. This value of the scaling factors
was suggested by the Cowan range from about 0.7
or 0.8 for neutral or weakly ionized systems [6, 8].
It is known empirically that scaling down of the HF
Coulomb radial integral values by 5 to 20 percent
will give RCG eigenvalues in better agreement with
experimental energy levels, the smaller factors being
for neutral or weakly ionized systems [8]. The cal-
culated HFR results are reported in the tables as ab
initio results.

The relativistic energies and the Landé g-factors
of 6s26p2, 6s26pnd (n = 6, 7), 6s26pns (n = 7, 8),
6s26p5f and 6s26pnp (n = 7, 8) configurations in
Rn V are presented in Table I for the HFR and
MCDF results. The obtained results have given en-
ergies [cm−1] relative to 6s26p2 3P0 ground-state
level. The energies of 6s26p2 configuration have
been compared with other results [4, 5] in Table I.
Comparison values are only available in the lit-
erature for five levels. Chou et al. [4] presented

only energy of 6s26p2 3P1 using the multiconfigura-
tion relativistic random-phase-approximation the-
ory (MCRRPA). Biémont and Quinet [5] calculated
the energy levels and radiative transition probabil-
ities for states within the 6pk (k = 1–5) configura-
tions in the thallium, lead, bismuth, polonium and
actinium sequences up to radon using the relativis-
tic Hartree–Fock method. In [5], according to the
level compositions (LS coupling), 3P2 and 1D2 have
been interchanged for Rn V. Although the dominant
component of the eigenvector corresponds to 1D2,
it has been determined as 3P2 in [5]. A similar situ-
ation is for the other level. According to our studies
with both methods, 3P2 and 1D2 should be inter-
changed. When such a comparison is made, our
results for the energies of these two levels appear to
be in good agreement with [5].

To interpret the accuracy of our results, we
used (|Ethis work−Eother works|/Eother works)×100%.
The comparison between our results and theo-
retical [4, 5] has showed the differences in en-
ergies in the range of 0.12–2.83% when using
the HFR and MCDF calculations. As seen in
Table I, the results obtained from the HFR and
MCDF calculations are in agreement with each
other for 6s26p nd (n = 6, 7), 6s26p ns (n = 7, 8),
6s26p 5f and 6s26p np (n = 7, 8) configurations.
These data for Rn V have been for the first
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Fig. 1. Comparison of the wavelengths obtained
from this work (the HFR and MCDF calculations)
for E1 transitions.

Fig. 2. Comparison of the logarithmic weighted
oscillator strengths obtained from this work (the
HFR and MCDF calculations) for E1 transitions.

time presented in this work. Also, for high-lying
levels (6s26p nd (n = 8–10), 6s26pns (n = 8–10),
6s26p nf (n = 6–10), 6s26p np (n = 9, 10), 6s26p nh
(n = 6–10), 6s26p ng (n = 6–10) and 6s26p ni
(n = 7–10)), energies and the Landé g-factors ob-
tained using the HFR code are given in Table SI
provided in the supplementary material [21].

Here, the data on E1 transitions for this ion have
been for the first time presented using the HFR
and MCDF methods. We have obtained 13,956
and 22,636 possible E1 transitions, respectively.
The wavelengths λ [Å], logarithmic weighted oscil-
lator strengths, log(gf), and transition probabili-
ties, Aji [s−1], for 6s26p2–6s26p6d, 6s26p2–6s26p7s,
6s26p6d–6s26p7p and 6s26p7s-6s26p7p E1 transi-
tions between low-lying levels obtained using the
HFR [6] and GRASP [7] codes are presented
in Table SII provided in [21]. Figures 1–3 also
show the HFR and MCDF methods comparison
for E1 transitions. Linear correlation coefficient
R2 is 0.98 for wavelengths and 0.96 for logarithmic
weighted oscillator strengths and transition proba-
bilities. The agreement between the presented data
is a strong evidence for the reliability of the HFR
and MCDF calculations. Figure 3 does not include
the transition probability values of smaller than or
equal to 106 and greater than or equal to 1010.

Fig. 3. Comparison of the transition probabilities
obtained from this work (the HFR and MCDF cal-
culations) for E1 transitions.

To date, there have been only two studies on the
forbidden transition parameters for Rn V. These
are M1 and E2 transitions among 6s26p2 lev-
els [4, 5]. Chou et al. [4] reported oscillator strength
of 6s26p23P0–3P1 M1 transition using the MCR-
RPA. Biémont and Quinet [5] presented calculation
results for nine transitions of Rn V using the HFR.
We obtained 21,082 for E2 and 13,830 for M1 tran-
sitions in the HFR calculation and 38,369 for E2
and 26,973 for M1 transitions in the MCDF calcula-
tion. Table II reports wavelengths λ [Å], transition
probabilities Aji [s−1], and logarithmic weights os-
cillator strengths log(gf), between the ground state
levels (6s26p2) for forbidden (E2 and M1) transi-
tions in Rn V. We have compared our results with
those reported by Biémont and Quinet [5] for nine
transitions in Table II. A good agreement of our re-
sults with both these results has been observed. As
seen in Table II, the results obtained from the HFR
and MCDF calculations are in agreement with each
other for wavelengths and logarithmic weighted os-
cillator strengths results. Some small difference has
arisen from the fact that the methods involved dif-
ferent contributions.

We have calculated the mean ratio for the accu-
racy of our results. The values 1.04 and 0.99 (for
M1 transition) and 1.04 and 0.98 (for E2 transition)
are found for the mean ratio of λ(HFR)/λ(MCDF) and
log(gf)(HFR)/ log(gf)(MCDF), respectively. The re-
sults for transition probabilities are in agreement
with [5]. For M1 transitions, the mean ratio be-
tween our results and [5] has been found in values
1.01 for the HFR calculation and 1.15 for the MCDF
calculation. We have found values 1.07 (calculation
HFR) and 0.89 (calculation MCDF) for the mean
ratio of Aji (this work)/Aji [5] for E2 transitions, ex-
cept for the transition 14834.00 Å (for MCDF).

In the case for new 6s26p2–6s26p7p, 6s26p7p–
6s26p7p, 6s26p6d–6s26p7s, 6s26p6d–6s26p6d and
6s26p7s–6s26p7s E2 and M1 transitions ob-
tained from the HFR and MCDF calculations,
we have also given wavelengths λ, logarith-
mic weighted oscillator strengths log(gf), and
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TABLE II

The wavelengths λ, transition probabilities Aji and logarithmic weights oscillator strengths log(gf) between the
ground state levels (6s26p2) for forbidden (E2 and M1) transitions in Rn V.

Transitions Method λ [Å]
Aji [s−1] log(gf)

This work Other w. This work Other w.
3P0–3P1 M1 HFR 2873.80 5.88(2) 5.50(2)a −5.660 −5.677b

MCDF 3028.60 4.90(2) −5.694
3P1–1S0 M1 HFR 1720.25 2.410(3) 2.330(3)a −5.971 –

MCDF 1696.40 2.295(3) −6.004
3P0–1D2 E2 HFR 2502.24 3.43(1) 3.140(1)a −6.793 –

MCDF 2515.10 2.86(1) −6.868
3P0–3P2 E2 HFR 1263.72 5.68(0) 4.12(0)a −8.167 –

MCDF 1292.80 5.33(0) −8.175
1D2–1S0 E2 HFR 1888.07 4.15(2) 3.84(2)a −6.654 –

MCDF 1915.50 5.05(2) -6.556
3P2–1S0 E2 HFR 7248.00 1.125(0) 1.280(0)a −8.052 –

MCDF 6843.10 0.049 −9.483
3P1–1D2 M1 HFR 19353.73 8.03(−1) 9.72(−1)a −6.647 –

MCDF 14834.00 1.94(0) −6.494

E2 HFR 19353.73 0.77(−3) 1.030(−3)a −9.664 –
MCDF 14834.00 3.49(−3) −9.238

3P1–3P2 M1 HFR 2255.59 6.73(2) 6.34(2)a −5.591 –
MCDF 2255.60 5.94(2) −5.644

E2 HFR 2255.59 4.65(1) 4.14(1)a −6.752 –
MCDF 2255.60 3.71(1) −6.848

3P2–1D2 M1 HFR 2553.15 5.980(2) 5.60(2)a −5.534 –
MCDF 2660.10 5.168(2) −5.562

E2 HFR 2553.15 7.304(1) 6.320(1)a −6.447 –
MCDF 2660.40 5.704(1) −6.519

aRef. [5], bRef. [4]

transition probabilities Aji and presented them in
Table SIII [21]. We have found values 1.00, 1.00
and 0.98 (of E2 transitions), and 1.03, 0.99 and
1.05 (of M1 transitions) for the mean ratio of
λ(HFR)/λ(MCDF), log(gf)(HFR)/ log(gf)(MCDF) and
Aji(HFR)/Aji(MCDF), respectively. Again, the agree-
ment between data used in this work is a strong
evidence for the reliability of the HFR and MCDF
calculations.

4. Conclusion

The main purpose of the present manuscript has
been to obtain appropriate values determining the
spectrum of Rn V. The energies and Landé g-factors
for excited levels, and E1, E2 and M1 transitions are
reported in Tables I–II and Tables SI–SII. Also, we
have presented new results obtained from this work
as supplementary tables (Tables SI-SIII). The E1,
E2, and M1 transitions of Rn V have been obtained
for the first time for transitions between low-lying
levels, except for transitions in Table II. We hope
that our results obtained using the HFR and MCDF
methods will be useful for experimental studies and
for interpreting the spectrum of Rn V.
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