
ACTA PHYSICA POLONICA A No. 2 Vol. 139 (2021)

Propagation of Axisymmetric
Stoneley Waves in Elastic Solids

Chunlei Biana, Bin Huanga,b,c, Longtao Xiea,b,c,
Lijun Yia,b,c, Lili Yuana,d and Ji Wanga,b,c,∗

aPiezoelectric Device Laboratory, School of Mechanical Engineering and Mechanics,
Ningbo University, 818 Fenghua Road, Ningbo, 315211 Zhejiang, China
bTXC-NBU Joint Center of Research, School of Mechanical Engineering and Mechanics,
Ningbo University, 818 Fenghua Road, Ningbo, 315211 Zhejiang, China
cKey Laboratory of Impact and Safety Engineering of Ministry of Education, Ningbo University,
818 Fenghua Road, Ningbo, 315211 Zhejiang, China
dSchool of Civil and Environmental Engineering, Ningbo University, 818 Fenghua Road, Ningbo,
315211 Zhejiang, China

Received: 10.10.2020 & Accepted: 07.12.2020

Doi: 10.12693/APhysPolA.139.124 ∗e-mail: wangji@nbu.edu.cn

Stoneley waves — as one of just a few special wave modes propagating in infinite elastic solids and
interfaces — are well-known for their existence and frequency with distinct features. Their analysis and
properties are usually presented through the formulation in Cartesian coordinates, while the essential
features including the phase velocity and wave patterns are also consistent with other coordinates based
on an equivalent principle. The variation of the Stoneley wave properties with different coordinate
framework should be examined for possible insights related to mathematical solutions and applications
in addition to known knowledge. Through a systematic formulation with cylindrical coordinates and
subsequent solutions in the Bessel functions, it is shown that the amplitudes of Stoneley waves in
an axisymmetric configuration will decrease with radius which is in a strong contrast to the Cartesian
coordinate case. The examination of such features in a systematic manner can be of importance in
crafting and tuning of engineering applications.
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1. Introduction

Through rigorous studies of wave propagation
in earlier work by pioneers, a few typical wave
modes with distinct features and solutions have
been known as part of the theory and applications
of the wave phenomenon in elastic solids of differ-
ent configurations. Among few widely known wave
modes, the Stoneley waves are well presented and
examined in scientific literature for their unique fea-
tures like the existence with interfaces of solids and
fluids and the fact that they are nondispersive with
material properties.

In the case of the wave patterns and properties of
elastic solids and structures different from rectangu-
lar shapes, it is necessary to study the wave prop-
agation with an appropriate choice of coordinate
systems, which was described in popular textbooks
and monographs by, e.g., Ewing [1], Achenbach [2],
Graff [3], Eringen [4] and Rose [5], and in disser-
tations [6–9] with details on some specific wave
modes. Surprisingly, details of axisymmetric waves
are not referred to in the major literature (including
the papers mentioned above) as the essential modes

we are thoroughly familiar with [10]. However,
it does not mean that there are difficulties in ob-
taining solutions and making necessary comparisons
with known results in Cartesian coordinates. This
reflects a general conviction that the solutions and
their essential features are well known and the same.
This, of course, is correct to some degree but the
coordinate system dependence has specific features
which can easily be hidden if not examined in de-
tail as shown in [11]. It is found that in the case
of axisymmetric Rayleigh waves, the trajectory of
particles is no longer elliptical and the deforma-
tion will also decrease along the radius. This is
quite different from the solutions in a Cartesian co-
ordinate system but it also reveals that wave pat-
terns are the same for a larger radius. Clearly, it
shows that there are some special features in asso-
ciation with the Bessel functions to be better un-
derstood through comparison with a different co-
ordinate framework. With this objective in mind,
this study focuses on Stoneley waves at the inter-
face of two semi-infinite elastic solids with cylin-
drical coordinates for axisymmetric solutions and
features.
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2. Governing equations and solutions
with cylindrical coordinates

Stoneley waves exist at the interface of two per-
fectly bounded semi-infinite elastic solids made
of different materials, satisfying the given condi-
tions [12–15]. As a result, there exist a unique veloc-
ity, a distinct wave mode and wave modes in both
materials at the interface. We now consider the
axisymmetric waves which propagate along the ra-
dius and their decay along the depth using cylindri-
cal coordinates. The two elastic infinite-half-spaces
are bonded together along the plane z = 0 [5],
as sketched in Fig. 1. The quantities ρ̄ and ρ de-
note the mass density corresponding to the up and
down half-space. Notably, also λ̄, µ̄ and λ, µ can be
responsible for the elastic properties, i.e., the Lamé
constants.

Owing to the axisymmetric property, for this
problem the angular coordinate θ and the circum-
ferential displacement component uθ are neglected
in the analysis. As a result, the displacement vector
can be simplified to

u(r, z, t) = ur(r, z, t)er + uz(r, z, t)ez (1)
with uθ = 0. The displacements ur, uθ and uz read
as the function of the respective coordinate r, θ, z,
while t is the time.

Using the Helmholtz decomposition, we introduce
a scalar potential φ and a vector potentialH, where
H = Hrer +Hθeθ +Hzez to simplify the problem
for possible solutions [1]. With (1), we only need
to retain the component Hθ in H, so the displace-
ments can be decomposed into [16]:

u (r, z, t) = ∇φ (r, z, t) +∇×
(
Hθ(r, z, t)eθ

)
,

(2)
where

∇φ =
∂φ

∂r
er +

∂φ

∂z
ez, (3)

∇×
(
Hθeθ

)
= −∂Hz

∂r
er +

∂φ

∂z
ez. (4)

To clear up,

u (r, z, t) =

(
∂φ

∂r
− ∂Hθ

∂z

)
er

+

(
∂φ

∂z
+

1

r

∂ (rHθ)

∂r

)
ez. (5)

Now, by substituting this displacement vec-
tor u in the Lamé equations of motion of elastic-
ity [17, 18]:

(λ+ µ)∇ (∇u) + µ∇2u = ρü, (6)

the problem is simplified to two governing equa-
tions [14]:

∇2φ =
1

c2L
φ̈, (7)

∇2Hθ −
Hθ

r2
=

1

c2T
Ḧθ, (8)

Fig. 1. The interface of two perfectly bounded
semi-infinite elastic solids in cylindrical coordinates.

where

cL =

√
λ+ 2µ

ρ
and cT =

√
µ

ρ
(9)

are the longitudinal and transverse wave velocities,
respectively.

In the meantime, the same description in
the cylindrical coordinate system is as follows:

∇2φ =
1

r

∂

∂r
(rφ) +

∂2φ

∂z2
, (10)

∇2Hθ =
1

r

∂

∂r
(rHθ) +

∂2Hθ

∂z2
. (11)

Let us further introduce the transformation

Hθ = −∂ψ(r, z, t)

∂r
(12)

with the use of which

u(r, z, t) =

(
∂φ

∂r
+
∂2ψ

∂r2

)
er

+

(
∂φ

∂z
+
∂2ψ

∂z2
− 1

c2T
ψ̈

)
ez. (13)

Hence, the equivalence of (8) becomes simply

∇2ψ =
ψ̈

c2T
+ g(z), (14)

where g(z) is an arbitrary function of z. Assuming
g(z) = 0, one arrives at

∇2ψ =
ψ̈

c2T
. (15)

Summing up this part, the equivalent form of (7)
and (8) is then

∇2φ =
1

c2L
φ̈, (16)

∇2ψ =
1

c2T
ψ̈. (17)

The above equations are the standard wave propa-
gation equations with wave velocities cL and cT .
Since the two equations, (16) and (17), are the
same, we need to solve the first equation only.
Employing the method of separation of variables
through

φ = φ (r, z, t) = R(r)Z(z)e iωt, (18)
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where ω is the angular frequency of waves, this
brings us to

ω2

c2L
R(r)Z(z) + Z(z)

d2R(r)

dr2

+
Z(z)

r

∂R(r)

∂r
+R(r)

d2Z(z)

dz2
= 0. (19)

Here, the following definition of the wave number
is used:

k =
ω

c
. (20)

Then, the potential function can be given as
φ(r, z, t) =

(
A1 eαz +A2 e−αz

)
J0 (kr) e iωt, (21)

where A1 and A2 are the undetermined constants,
α is the decaying constant satisfying the relation
k2 = α2 + ω2/c2L and J0 (k r) is the zeroth-order
Bessel function of the first kind.

Similarly, we have
ψ (r, z, t) =

(
B1 eβz +B2 e−βz

)
J0 (kr) e iωt, (22)

where B1 and B2 are the undetermined constants
and β is the decaying constant satisfying the rela-
tion k2 = β2 + ω2/c2T .

Obviously, the exponential function eαz should
be neglected in the postulate function form because
of unbounded solution at z →∞. Thus,

φ (r, z, t) = Ae−αzJ0 (kr) e iωt, (23)

ψ (r, z, t) = B e−βzJ0 (kr) e iωt. (24)
A substitution of (23) and (24) into the displace-
ment functions (5) allows to determine the displace-
ment fields, i.e.,

ur =
∂φ

∂r
+
∂2ψ

∂r2
=

−k
(
Ae−αz − βB e−βz

)
J1(kr)e iωt, (25)

uz =
∂φ

∂z
+
∂2ψ

∂z2
− ψ̈

c2S
=

(
− αAe−αz + k2B e−βz

)
J0(kr)e iωt. (26)

Here,
α = kp, β = kq (27)

and

p =

√
1−

(
c

cL

)2

, (28)

q =

√
1−

(
c

cT

)2

. (29)

Consequently, the stress components are

σz = λ∇ · u + 2µ
∂uz
∂z

= (30)

µ
[
(k2 + β2)Ae−αz − 2k2βB e−βz

]
J0(kr)e iωt,

τzr = µ

(
∂ur
∂z

+
∂uz
∂r

)
= (31)

kµ
[
2αAe−αz − (k2 + β2)B e−βz

]
J1(kr)e iωt.

The same procedure can be easily adapted for
obtaining solutions when z < 0. These solutions,
according to the chosen convention, are denoted as
being overlined. As a result, we deal with the fol-
lowing expressions: ūr and ūz that refer to (25)
and (26), σ̄z and τ̄zr that refer to (30) and (31),
the parameters p̄ and q̄ that refer to (28) and (29)
and further also ᾱ, β̄ that refer to (27). The con-
stants remaining the same in both half-spaces of z
are k and c.

When considering the perfect interface of the two
half-spaces, the following boundary conditions for
Stoneley waves are applied [19]:

ur |z=0 = ūr|z=0 , uz |z=0 = ūz|z=0 , (32)

σz |z=0 = σ̄z|z=0 , τzr |z=0 = τ̄zr|z=0 . (33)
Now, combining the above boundary conditions into
the solutions of u and its overlined conterpart ū,
this results in

A− βB = Ā+β̄B̄, −αA+k2B = ᾱĀ+k2B̄,(
k2+β2

)
A− 2k2βB = ḡ

[
(k2+β̄2)Ā+2k2β̄B̄

]
,

2αA− (k2+β2)B = ḡ
[
− 2ᾱĀ− (k2+β̄2)B̄

]
,

(34)
where

ḡ =
µ̄

µ
. (35)

Assuming the coefficient determinant of (34), i.e.,∣∣∣∣∣∣∣∣∣
1 −β −1 β̄

−α k2 −ᾱ −k2

(k2 + β2) −2k2β −ḡ(k2 + β2) −2ḡk2β̄

2α −(k2 + β2) 2ḡᾱ ḡ(k2 + β̄2)

∣∣∣∣∣∣∣∣∣
(36)

vanishes, one obtains the frequency equation for
Stoneley waves.

Moreover, the expansion of the determinant leads
to the polynomial in the velocity c of the form(

c

cT

)4 [
(1− ḡm2)2 − (p̄+ ḡm2p)(q̄ + ḡm2q)

]
−(1− ḡ)

(
c

cT

)2 [
1− p̄q̄ − ḡm2(1− pq)

]
+4(1− ḡ)2(1− pq)(1− p̄q̄) = 0 (37)

in which
m =

cT
c̄T
. (38)

Not surprisingly, this is exactly the velocity
equation of Stoneley waves in Cartesian coor-
dinates [20–23]. It concludes that axisymmetric
Stoneley waves in cylindrical coordinates have ex-
actly the same velocity, although the waveform, now
in the Bessel functions here, is no longer the same
as the sine and cosine functions. We will discuss the
details in a later part of this paper.

One should note that our solutions for the dis-
placement functions are different from Cartesian
coordinate solutions that can be found in the lit-
erature. The displacements of the waves with
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Cartesian coordinate solutions can also be com-
pared with known results. The amplitude rations
of (34) are

Ā

B̄
= −kn̄, A

B
= −kn, B

B̄
= h, (39)

where

n̄ =
2p(q+q̄)− (1+q2)(1+pq̄)+ḡ(1+q̄2)(1− pq)

2p(1+p̄q)− (1+q2)(p+p̄)+2ḡp̄(1− pq)
,

n =
n̄(1 + p̄q)− (q + q̄)

n̄(p+ p̄)− (1 + pq̄)
, h =

n̄− q̄
n+ q

. (40)

Naturally, the displacement field and stress field are

ur = hk2B̄
[
ne−αz + q e−βz

]
J1(kr)e iωt

ūr = k2B̄
[
n̄eᾱz − q̄ eβ̄z

]
J1(kr)e iωt,

uz = hk2B̄
[
npe−αz + q e−βz

]
J0(kr)e iωt,

ūz = k2B̄
[
− n̄p̄eᾱz + eβ̄z

]
J0(kr)e iωt, (41)

and
σz = −µk3hB̄

[
(1 + q2)ne−αz + 2q e−βz

]
×J0(kr)e iωt,

σ̄z = µ̄k3B̄
[
− (1 + q̄2)n̄eᾱz + 2q̄ eβ̄z

]
×J0(kr)e iωt,

τzr = −µk3hB̄
[
2npe−αz + (1 + q2)e−βz

]
×J1(kr)e iωt,

τ̄zr = µ̄k3B̄
[
2n̄p̄eᾱz − (1 + q̄2)eβ̄z

]
×J1(kr)e iωt. (42)

The complete solutions of Stoneley waves have
been presented. Knowing the properties of two ma-
terials, one can systematically calculate the wave
velocity along the displacement and stress fields.
This, of course, could reveal the difference of Stone-
ley waves in the structure shown in Fig. 1.

3. Numerical examples

Now we consider axisymmetric Stoneley waves in
a tungsten–aluminum interface as the example il-
lustrated in Fig. 1. Material 1 is tungsten and ma-
terial 2 — aluminum, characterized by [24–27]

ρ̄ = 19250 kg/m3
, ρ = 2700 kg/m3

,

λ̄ = 199.4× 109 Pa, λ = 55.28× 109 Pa,

µ̄ = 158.56× 109 Pa, µ = 25.94× 109 Pa

which gives
c̄L = 5180 m/s, cL = 6300 m/s,

c̄T = 2870 m/s, cT = 3100 m/s,

m = 1.08, ḡ = 6.1126.

Fig. 2. Displacement ūr vs. the normalized coor-
dinate r/ς and z/ς at t = 0.

Fig. 3. As in Fig. 2 but for the displacement ur.

The phase velocity is calculated from (37) as
c = 2773.2171 m/s. Consequently, four parameters
are

p = 0.8979, q = 0.4467,

p̄ = 0.8446, p̄ = 0.2575,

and three amplitude ratios are
n̄ = 2.5621, n = 0.2780, h = 0.4203

with k2B̄ as the factor of the amplitudes. Since
kς = 2π, the normalized displacements at t = 0
become

ūr
k2B̄

=
[
n̄e2πp̄z/λ − q̄ e2πq̄z/λ

]
J1

(
2πr

λ

)
,

ur
k2B̄

= h
[
ne2πpz/λ + q e−2πqz/λ

]
J1

(
2πr

λ

)
,

ūz
k2B̄

=
[
−n̄p̄e2πpp̄z/λ + e−2πq̄z/λ

]
J0

(
2πr

λ

)
,

uz
k2B̄

= h
[
npe−2πpz/λ + e−2πqz/λ

]
J0

(
2πr

λ

)
.

(43)
The displacements at t = 0 for Stoneley waves are
plotted in Figs. 2–5, for the given structure in Fig. 1.

For a different time, normalized displacements at
z = 0 are plotted in Figs. 6 and 7.
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Fig. 4. Displacement ūz vs. the normalized coor-
dinate r/ς and z/ς at t = 0.

Fig. 5. As in Fig. 4 but for the displacement uz.

Fig. 6. Displacement ur (or ūr) vs. z/ς at z = 0.

Fig. 7. As in Fig. 6 but for the displacement uz

(or ūz).

Fig. 8. Displacements ūr and ur at r/ς = 1.25 in
the depth direction.

Fig. 9. As in Fig. 8 but for the displacements ūz

and uz.

With r = 1.25ς, the displacements ūr and ur var-
ied in time with the depth, as depicted in Fig. 8.
Point A is the site of the node for which the value
on the vertical ordinate is ya. Points B1, B2, B3

and B4 are the maximum displacements in the
tungsten layer, respectively, for which values on
the vertical ordinate are the same, i.e., yb, while
on the horizontal ordinate they are xb1, xb2, xb3
and xb4. Here ya = −0.2116, yb = −0.5336 and
xb1 = 2xb2 = −2xb3 = −xb4 = −0.0159.

Similarly, the displacements ūz and uz are shown
in Fig. 9. There is no node and point C is
still the position of the maximum displacement,
yc = −0.1201 and xc1 = 2xc2 = −2xc3 =
−xc4 = 0.1169.

Finally, displacement solutions (41) can be used
to study the axisymmetric Stoneley waves in the far
field. Strictly speaking, the wave velocity is defined
only by the function f

(
k (r − ct)

)
. It can be clearly

seen at this stage that displacements ur, uz and ūr,
ūz do not satisfy this requirement. However, it is
known that the Bessel functions can be expressed
in the following asymptotic form:

J1(x) =

√
2

πx
sin (x− π/4) ,

J0(x) =

√
2

πx
cos (x− π/4) , (44)

with such an approximation and for the large ra-
dius r, (41) can be written as
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ur = a(z) sin (kr − π/4) cos (ωt) ,

ūr = ā(z) sin (kr − π/4) cos (ωt) ,

uz = b(z) cos (kr − π/4) cos (ωt) ,

ūz = b̄(z) cos (kr − π/4) cos (ωt) , (45)
where

a(z) = hk2B̄

√
2

kπr

(
ne−αz + q e−βz

)
,

ā(z) = k2B̄

√
2

kπr

(
n̄eᾱz − q̄ eβ̄z

)
,

b(z) = hk2B̄

√
2

kπr

(
npe−αz + e−βz

)
,

b̄(z) = k2B̄

√
2

kπr

(
−n̄p̄eᾱz + eβ̄z

)
. (46)

Using the basic identities of trigonometric func-
tions, one can even write

ur = a(z)
sin
(
kr − π

4 + ωt
)

+ sin
(
kr − π

4 − ωt
)

2
,

ūr = ā(z)
sin
(
kr − π

4 + ωt
)

+ sin
(
kr − π

4 − ωt
)

2
,

uz = b(z)
cos
(
kr − π

4 + ωt
)

+ cos
(
kr − π

4 − ωt
)

2
,

ūz = b̄(z)
cos
(
kr − π

4 + ωt
)

+ cos
(
kr − π

4 − ωt
)

2
.

(47)
The above results are in the waveform of the
f
(
k (r − ct)

)
pattern and are the superposition of

one forward travelling wave with the one back-
ward travelling wave with the same wave velocity
c = ω/k. The waves thus exhibit the property of
travelling waves. Furthermore, the displacements in
the far field exhibit a r−1/2 decaying, and it is in-
variant in Cartesian coordinates. In fact, it can be
explained by the density of the energy in the prop-
agation. When the axisymmetric Stoneley waves
travel from the source, the energy is distributed
on the cylindrical surface where each infinitesimal
area possesses the energy proportional to 1/ (2πr).

Fig. 10. A comparison of ur (or ūr) with exact and
asymptotic values at z = 0 and t = 0.

TABLE I

A comparison of ur (or ūr) with exact and asymptotic
values at z = 0 and t = 0.

r/ς
Exact

value [×10−2]

Asymptotic
value [×10−2]

error
[%]

0.5 8.67 9.70 11.84

1 −6.47 −6.86 5.98

1.5 5.38 5.60 3.99

2 −4.71 −4.85 2.99

2.5 4.23 4.34 2.39

3 −3.88 −3.96 1.99

TABLE II

A comparison of uz(or ūz) with exact and asymptotic
values at z = 0 and t = 0.

r/ς
Exact

value [×10−2]

Asymptotic
value [×10−2]

error
[%]

0.5 −15.98 −16.72 4.62

1 11.57 11.82 2.18

1.5 −9.52 −9.65 1.42

2 8.27 8.36 1.05

2.5 −7.42 −7.48 0.83

3 6.78 6.83 0.69

Fig. 11. As in Fig. 10 but for the comparison of
uz (or ūz).

Because displacements are proportional to the
square root of energy, the displacements are pro-
portional to r−1/2. For a large radius, the axisym-
metric Stoneley waves can be considered as pla-
nar surface waves in a small range. With z = 0,
ur or ūr using plots in Fig. 10, where point E is
the first intersection between the exact and approx-
imate curves, having xe = 0.3930 and ye = 0.1537
and numerical comparisons in Table I, the accu-
racy of Cartesian solutions near the source is clearly
shown. Also, uz or ūz using plots in Fig. 11, where
point F is still the first intersection, having xf =
0.1819 and yf = 0.3673 and numerical comparisons
in Table II.
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Our results show that the plane Stoneley waves
can be used to approximate the far-field axisym-
metric surface waves. In addition, this also explains
that the displacement near the origin or the excita-
tion point is larger than that of the outer region
which can be well represented in Cartesian coor-
dinates. This also interprets that the damage of
the epicentre earthquake is much more serious than
that of the distant area, even the displacement is
not reduced by the distance if damping is not con-
sidered. Of course, with steady waves generated
by point sources, axisymmetric coordinates and so-
lutions must be used to better understand wave
propagation, especially near the source or near field.
This is also true that acoustic wave devices or possi-
ble axisymmetric structures under point source ex-
citation would enhance the wave characteristics re-
quired in the application at the centre of the circular
structure.

4. Conclusions

With systematically deduced solutions which ex-
ist as Stoneley waves of the structure of two per-
fectly bounded half-spaces in cylindrical coordi-
nates the conclusion can be drawn that the wave
velocity still maintains the same value as in Carte-
sian coordinates. Expectedly, due to the nature of
the Bessel function, the similar displacements in the
two half-spaces are attenuated to the constant value
as the known results in Cartesian coordinates. In
other words, the particle polarization trajectory of
the Stoneley wave near the origin is slightly dif-
ferent from Cartesian coordinates but the asymp-
totic expansion of the Bessel function shows that
the displacement amplitude will remain the same
as Cartesian coordinates when the radius is large
or far from the origin. At the same time, the re-
sults further show that the axisymmetric solution
near the center is larger than the solution given by
the trigonometric function which implies that the
axisymmetric description is more accurate in solv-
ing such problems. In the case of a wavelength with
the dimension of kilometers, a better solution can be
obtained by using the cylindrical coordinate expres-
sion proposed in recent studies. In addition, these
results of the Bessel functions would also be offered
as the basis for the study of sensors and actuators in
finite structures related to Stoneley waves. Stoneley
waves tested and measured from a point source also
require a better understanding on the displacement
changed near and far from the origin. The solu-
tions and analysis in this regard are undoubtedly
a good start for studying Stoneley waves in curved
structures; circular devices with a systematic opti-
mization should particularly be considered.
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