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In this study, the pair approximation in the Kikuchi version is applied to study ferromagnetism of
a nanosized bilayer system on a square lattice using the Ising model. Each layer is divided into the core,
core–surface and surface parts as introduced for the monolayers by Özüm et al. (2015). Temperature,
magnetic field and interlayer exchange energy variations of the long- and short-range order parameters
are investigated. Some second-order phase transitions between ferromagnetic and paramagnetic phases
with size effects are observed. By using the path probability method, the flow of the system towards
some stable equilibrium states in the ferromagnetic phase is obtained via relaxation curves and flow
diagrams. The results of the numerical calculations are in a fairly good agreement with the available
theoretical works of other authors.
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1. Introduction

The magnetic multilayer systems have poten-
tial applications in information storage, retrieval
magnets, spintronics, optoelectronic devices, stored
energy and giant magnetoresistance devices [1–6].
Many studies, such as those of spin-valve read
heads, magnetic random access memories and mag-
netic switch devices, have focused on bilayer fer-
romagnets. They are the first stage between
a two-dimensional magnetic plane and a three-
dimensional bulk magnet. In general, the number
of magnetic atoms in each layer of bilayers and their
orientation under the external magnetic field h are
related to the technological significance of these sys-
tems. The Ising model and its variants are very use-
ful tools in the study of the magnetic properties of
such bilayer systems [7–42]. The authors of this pa-
per construct some different types of lattice struc-
tures, such as a triangular lattice [25, 28], square
lattice [8], honeycomb lattice [36–39], a Bethe lat-
tice [16, 26, 27], as well as graphene-like struc-
tures [29, 30, 42]. Interestingly, second-order phase
transitions were presented in some bilayer stud-
ies [16, 23, 26] as well. The static and dynamic
properties of magnetization for square lattice bi-
layer systems have been investigated so far using
a variety of techniques such as the pair approxima-
tion [19], self-consistent field theory [20], effective
field theory [21, 24], Monte-Carlo simulation [31],

dynamic mean-field theory [33] and Glauber-type
stochastic dynamics [34, 35]. However, a paral-
lel study of both the static and dynamic proper-
ties of short-range order parameter Q with mag-
netization M for square lattice bilayer systems has
not been performed in detail for such systems, e.g.,
for those with different layer sizes and interlayer
interactions.

In the scope of this work, we have investigated
the layer size effects, second-order phase transi-
tion, interlayer interaction effects and long- and
short-range orders that are controlled by the in-
terlayer interaction in the bilayer system via static
and dynamics properties with different sizes. We
study the static properties under the pair approx-
imation (PA) [43] while for its dynamics we use
the path probability method (PPM) with pair dis-
tribution [44]. The PPM is also known as the
natural extension into the time domain of the
PA. This particular method has been proved to
have the potential to provide information on both
the equilibrium and the non-equilibrium proper-
ties of the spin systems [45–48]. In the current
study, we examined a spin system at an equilibrium
state. Moreover, for the same system at nonequi-
librium, M vs. time t and Q vs. t curves (or re-
laxation curves), as well as the flow diagrams in
the phase space of M vs. Q are discussed in the
context of some geometrical factors of each layer
in the system.
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The paper is organized as follows: Sect. 2 is de-
voted to the presentation of the spin system and
a short description of the used methods, the PA and
the PPM, in Sect. 3, we present and discuss the cal-
culated results and Sect. 4 offers concluding remarks
on salient features of the current investigation.

2. Theoretical model

A schematic representation of a nanosized bilayer
system on the square lattice (ab) is shown in Fig. 1.
Each layer in 2D exhibits three shells of spins with
La = Lb = 3. Hence, the size of each layer increases
as either La or Lb increases. The filled-circles in red
and blue colors correspond to the core C and sur-
face S spins in the layers, respectively. The filled-
circles contain a core spin number (Na

C , N
b
C), a core–

surface (CS) spin number (Na
CS , N

b
CS) and a sur-

face spin number (Na
S , N

b
S). The total number of

spins (Na, N b) in a bilayer system covers the spins
of layers a and b with N = Na+N b, Na = Na

C+N
a
S ,

N b = N b
C +N b

S , and N
ab = (N

a
+N b)/2. Further,

each layer is described by core spins (SCa and SCb ),
core–surface spins (SCSa and SCSb ) and surface spins
(SSa and SSb ).

In the presence of external magnetic field h,
Hamiltonian for the above spin system can be ex-
pressed as

H = −Ja
∑
〈ij〉

Si Sj − Jb
∑
〈ij〉

σiσj

−Jab
∑
〈ij〉

Siσj − h
∑
〈ij〉

(Si + σj), (1)

where Ja and Jb are the intralayer bilinear exchange
coupling interactions between nearest-neighbor
atoms (denoted by 〈ij〉) with spins Si = ±1 in
layer a and σi = ±1 in layer b, respectively, while
Jab denotes the interlayer bilinear exchange cou-
pling. All the exchange coupling parameters ap-
pearing in (1) are given in kBT units where kB is
the Boltzmann constant and T is the temperature.
The cases of Ja > 0, Jb > 0, Jab > 0 and Ja < 0,
Jb < 0, Jab < 0 correspond to ferromagnetic (FM)
and antiferromagnetic (AFM) interactions, respec-
tively. A paramagnetic (PM) phase exists in the
system when Ja = Jb = Jab = 0 for all tempera-
tures. The fractions of the spin states (±1) are
called the point (or state) variables Xi. In the
PA method developed by Kikuchi [43], other vari-
ables, known as the bond (or pair) variables Yij ,
are introduced. If the total number of spin pairs
in the system is Np, the number of (+1,+1) bonds
is Y11Np, the number of (+1,−1) bonds is Y12Np

(Y12 = Y21) whereas the number of (−1,−1) bonds
is Y22Np. The relations between point variables and
bond variables is given by Xi =

∑2
j=1 Yij (i = 1, 2).

We now separate (1) into three terms
(HC , HCS , HS), including all interactions be-
tween nearest neighboring spins in core regions
(JaC , J

b
C), interfaces (JaCS , J

b
CS) and surface parts

Fig. 1. A schematic view of a square lattice bilayer
system with three shells (La = Lb = 3). The up-
per and lower layers containing the spins labeled
as Sa and σb are marked as a and b. The in-
tralayer bilinear exchange coupling interactions be-
tween nearest-neighbor atoms and the interlayer bi-
linear exchange coupling, respectively, are denoted
as Ja, Jb and Jab.

(JaS , J
b
S) of the layers. The explicit details of the

above formulation are presented for a nanoscale
monolayer in [49–53]. By making use of the
definitions from [45], a long–range order parameter
M , i.e., average magnetization and a short-range
order parameter Q are calculated, respectively

M = X1 −X2 = Y11 − Y22, (2)

Q = Y11 − 2Y 12 + Y22. (3)
Here, the bond variables are found from the
numerical solutions of the set of equations:

Yij =
1

Z
(XiXj)

(γ−1)/γ
e−βεij ≡ Z−1eij , (4)

where i, j = 1, 2, β = (kBT )
−1 and γ is the

coordination number of a given lattice site inside
the bilayer system and Z is the partition function
defined by the relation Z =

∑2
i,j=1 eij . For the

energy parameters εij in (4), one introduces the
following definition:

εij = εaij + εabij + εbij , i, j = 1, 2, (5)
where

εaij = Na
p,Cε

a
ij,C +Na

p,CSε
a
ij,CS +Na

p,Sε
a
ij,S ,

εabij = Nabγabεab,

εbij = N b
p,Cε

b
ij,C +N b

p,CSε
b
ij,CS +N b

p,Sε
b
ij,S , (6)

Here, one reads

Na
p,C =

1

2
Na
Cγ

a
C −Na

CS , Na
p,CS = Na

CSγ
a
CS ,

Na
p,S =

1

2
Na
Sγ

a
S (7)

and

N b
p,C =

1

2
N b
Cγ

b
C −N b

CS , N b
p,CS = N b

CSγ
b
CS ,

N b
p,S =

1

2
N b
Sγ

b
S (8)
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TABLE I

Numbers of the spins and spin pairs within the C, CS
and S regions.

La = Lb 2 3 4 5 6 7
Na

C = Nb
C 5 13 25 41 61 85

Na
S = Nb

S 8 12 16 20 24 28
Na

CS = Nb
CS 6 10 14 18 22 26

Na
p,C = Nb

p,C 4 16 36 64 100 144
Na

p,CS = Nb
p,CS 12 20 28 36 44 52

TABLE II

Bond energies of spin pairs i, j for C, CS and S ions
of a and b layers.

Layers Pair Core
Core–
surface

Surface

a

εa11 −Ja
C − 2h −Ja

CS −Ja
S − 2h

εa12 = εa21 Ja
C Ja

CS Ja
S

εa22 −Ja
C + 2h −Ja

CS −Ja
S + 2h

b

εb11 −Jb
C − 2h −Jb

CS −Jb
S − 2h

εb12 = εb21 Jb
C Jb

CS Jb
S

εb22 −Jb
C + 2h −Jb

CS −Jb
S + 2h

Interlayer εab −Jab

as the numbers of spin pairs in each layer. These
variables are listed in Table I. The coordination
numbers are assumed to be γaC = γbC = 4, γaCS =
γbCS = 2, γaS = γbS = 0, γab = 2, while εaij,C , ε

a
ij,CS ,

εaij,S , ε
b
ij,C , ε

b
ij,CS , ε

b
ij,S are called the bond ener-

gies of spin pairs ij for C, CS, S ions of layers a
and b, respectively [49–53], and εab is the interlayer
bond energy for the neighboring spins. Their nu-
merical values are computed by using (1), as shown
in Table II. The three nonlinear algebraic equa-
tions, namely (4), are solved by using the Newton–
Raphson or iteration method for a fixed layer size
La = Lb and a given value of T , h, and Jab. After
establishing the Yij values, theM and Q values can
be obtained easily by using (2) and (3), respectively.
In the next section, we shall examine the thermal,
magnetic field and interlayer exchange variations of
the system at equilibrium for different layer sizes.

The time dependence of M and Q, dynamic (or
rate) equations for the bilayer system, has been ob-
tained by using the PPM [44]. The rate of change
of the bond variables is given by [45–48]:
dYij
dt

= −k1
∑

kl=trans

(Pij,kl − Pkl,ij + Pij,lk − Plk,ij)

−k2
∑
kl=rot

(Pij,kl − Pkl,ij + Pij,lk − Plk,ij), (9)

where Pij,kl is the path probability rate for the sys-
tem to go from state ij to kl and k1 and k2 are the
rate constants. The detailed balance of the system
requires that

Pij,kl = Pkl,ij (10)

for all ij, kl. Using the Recipe II equation of
Kikuchi [44], the path probability rate can be writ-
ten as

Pij,kl = Z−1eklYij , (11)
where ekl is found by using (4). Now, inserting (11)
to (9), the rate equations for the bond variables are
obtained

dY11
dt

= k1Z
−1(e11Y12 − e12Y11),

dY12
dt

=
1

2
Z−1e12

(
k1 Y11 + k2Y22

)
−1

2
Z−1

(
k1e11 + k2e22

)
Y12,

dY22
dt

= k1Z
−1(e22Y12 − e12Y22). (12)

Using (2), (3) and (12), the dynamic equations
for the order parameters can be expressed in the
form [45]:

dM

dt
=

dY11
dt
− dY22

dt
, (13)

dQ

dt
=

dY11
dt
− 2

dY12
dt

+
dY22
dt

. (14)

The above nonlinear equations have been solved nu-
merically by using the Runge–Kutta method and
the solutions have been plotted as the relaxation
curves of M and Q and the flow diagrams in the
two-dimensional M–Q phase space for fixed values
of layer size, T , h, Jab, k1 and k2.

3. Results and discussion

In this section, we investigate the static and dy-
namic aspects of long- and short-range order pa-
rameters (M,Q) for the square lattice bilayer sys-
tem within the Ising model depicted in Fig. 1. The
schematic illustrations of thermal, interlayer ex-
change coupling (with Jab > 0 and Jab < 0) and
magnetic field behaviors for M and Q, as well as
their time evolutions are presented in Figs. 2–11.
Especially, we have examined the flow diagrams in
a phase space of M vs. Q and relaxation curves
for the time-dependence properties. For simplicity,
we have chosen the FM interaction energies among
the spins in the core region and across the CS in-
terface inside the layers with JaC = JbC = 1 and
JaCS = JbCS = 1. We then present the AFM case
(JaCS = JbCS = −1, as dashed lines) in one fig-
ure (see Fig. 2) for a comparison with the FM case
(solid lines). In the above calculations, there is no
contribution to the energy parameters in (5) and (6)
coming from the exchange interactions among the
spins in the surface part since the lattice coor-
dination number of the surface part is zero, i.e.,
γaS = γbS = 0. Hence, we have considered the cases
with JaS = JbS = 0.

For the static properties, we first draw a graph
of long- and short-range order parameters vs. tem-
perature T in the absence of external magnetic field.
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Fig. 2. (a) Temperature T dependence of M at
various layer sizes for h = 0 and Jab = 1 with their
second-order phase transition, (b) the same as (a)
but for Q, (c) corresponding phase diagram in the
T–Jab plane. The solid lines and dashed lines indi-
cate FM and AFM interactions, respectively.

The results using three different values of layer sizes
with La = Lb = 4, 5, 6 shells are given in Fig. 2 for
the chosen Jab = 1.0. Figure 2a can be used to
determine the points where the second-order phase
transition occurs. We observe that M and Q be-
come saturated as M → 0.9616 and Q → 1.0
when T approaches zero while they decrease con-
tinuously with increasing temperature and one of
them, M , converges to zero, as seen in Fig. 2a
and b. This behavior evidently refers to a con-
tinuous (or second-order) phase transition from the
ferromagnetic phase to the paramagnetic phase at
zero magnetic field, as seen in Fig. 2a. As stated in
our previous study [50], the first-order phase tran-
sitions are observed in the presence of biquadratic
interaction K and single ion anisotropy D in the
nanosized structures. The transition temperatures
are strongly dependent on the layer size and pro-
portional to La (= Lb). We also see in Fig. 2c
that critical temperature values TC decrease for de-
creasing values of Jab in the Jab > 0 regime. With
a further decrease in Jab below the Jab = 0 value,
TC continues to decrease and eventually becomes
zero. On the other hand, to determine the effects of
JaCS

(
= JbCS

)
on the critical temperatures, we refer

to the predictions of (2) and (3) for the dependence

Fig. 3. (a) Temperature T dependence of M at
various field values for La = Lb = 4 and Jab = 1,
(b) the same as (a) but for Q, (c) M vs. T at var-
ious layer sizes for h = 0.01 and Jab = 1, (d) the
same as (c) but for Q, (e) M vs. T at various in-
terlayer interactions for La = Lb = 4 and h = 0.05,
(f) the same as (e) but for Q. Note that Jab > 0.

ofM andQ on temperature using JaCS = JbCS = −1.
Our calculations predict that the positions of the
curves are different when the interaction energy be-
tween spins in the C and S parts is changed, e.g.,
when C and S spins exhibit the AFM interactionM
vs. T and Q vs. T curves shifted to lower tempera-
tures (see the dashed curves in Fig. 2a and b). Thus,
the AFM exchange coupling causes a decrease in the
critical temperatures (dashed curves in Fig. 2c).

In Figs. 3 and 4, M vs. T and Q vs. T are
plotted for nonzero field values (h 6= 0). We ob-
tained the curves for three different values of the
magnetic field, La (= Lb) and Jab. According to
Fig. 3a and b, M and Q decrease continuously from
one towards zero as the temperature increases and
hence the phase transition has been removed in the
presence of external magnetic field. Magnetization
decreases to zero, however, at a lower temperature
than a short-range order parameter. If the bilayer
size is increased, both M and Q also grow as shown
in Fig. 3c and d, respectively. Similarly, for any
temperature, increasing the FM interlayer interac-
tion energy with Jab > 0 causes an increase in the
order parameters (Fig. 3e and f). In order to exam-
ine the temperature dependence of both order pa-
rameters for the AFM interlayer interaction energy,
we pick Jab = −3.5,−3.0,−2.5,−2.4,−2.3,−2.0 to
have the condition Jab < 0 with La = Lb = 4,
h = 1.0. Figure 4a and b describes the two
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Fig. 4. (a) The same as Fig. 3e but for h = 1,
(b) the same as Fig. 3f but for h = 1. Note that
Jab < 0.

saturation values of magnetization (M = 0.0, 1.0)
and short-range order parameter (Q = −1.0, 1.0)
to appear near the zero temperature. Meanwhile,
each of M and Q curves has different behaviors
with the increasing T . For example, M reaches
a maximum value as the temperature grows with
Jab ranging from −3.5 to −2.5. These maxima
shift towards a lower temperature as Jab grows,
as can be seen from the black, blue and red col-
ored curves corresponding to Jab = −3.5,−3.0 and
−2.5, respectively. Moreover, M vs. T and Q vs. T
curves decrease with the increasing temperature in
the Jab range from −2.4 to −2.0. These interesting
curves are attributed to the compensation between
the interlayer exchange coupling Jab and tempera-
ture. Also, similar calculations can be carried out
using different values of couplings JaC (JaCS) and J

b
C

(JbCS). We compare the above results (except for
the short-range ordering) with the available theo-
retical works [42]. We find that some of the magne-
tization curves are very similar to those for a bilayer
graphene-like structure in a longitudinal magnetic
field with the compensation between the crystal-
field and temperature observed by Wu et al. [42].

The Jab dependence of M using different layer
sizes (La, Lb), temperatures T and magnetic fields
h is shown in Fig. 5a–c, respectively. One can see
in Fig. 5a that magnetization shifts to the left as
the increase of a layer size. In general, M curves
range from 0.0 to 1.0 with increasing of Jab. This
behavior is also consistent with the general behavior
in accord with the size. In Fig. 5b, we represent M
vs. Jab curves which are obtained at several differ-
ent temperature values. For any temperature, the
stable branches ofM become saturated asM → 1.0
while Jab increases. It is determined that magne-
tization increases while the Jab increases and the

Fig. 5. (a) Interlayer coupling Jab dependence of
M at various layer sizes for h = 0.05 and T = 80,
(b) the same as (a) but at different temperatures for
La = Lb = 4, (c) the same as (b) but at different
field values for T = 80.

temperature decreases at the same layer sizes. The
magnetization curve of the spin-1/2 Ising bilayer
still exhibits zero magnetization plateau but a con-
tinuous magnetization jump persists at low enough
temperatures. It actually turns out that the size
of a continuous magnetization jump is just gradu-
ally suppressed with increasing temperature. The
Jab development of M is determined to exhibit al-
most the same behavior in Fig. 5c. The Jab evo-
lutions of M are compatible in itself according to
h = 0.01, 0.05 and 0.25. The M values tend to shift
to the left with the increasing magnetic field values.

In Figs. 6 and 7, magnetization M as a function
of the magnetic field is given. The isothermal mag-
netic field dependence of M is a paramagnetic-type
behavior for the positive and negative values of Jab
and they are presented in Fig. 6a and b, respec-
tively. Figure 6a shows that the M vs. h curves
strongly depend on the temperature. They change
sharply around h = 0 and become steeper when
T decreases and magnetization of the spin-1/2 Ising
square lattice bilayer exhibits a zero-magnetization
plateau. These results are valid for the particu-
lar case Jab = 1 which can be in the range of the
localized-magnon effect [40, 54, 55]. Besides, the
curves presented in Fig. 6a provide a convincing ev-
idence that a description based on an effective Ising
ferromagnet on the square lattice is faithful up to
moderate temperatures with T ≤ 600. On the other
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Fig. 6. (a) Magnetic field h dependence of magne-
tization at various temperatures for the FM inter-
layer coupling with Jab = 1.0, (b) the same as (a)
but for the AFM coupling with Jab = −2.0. Note
that La = Lb = 5.

Fig. 7. (a) Magnetic field h dependence of magne-
tization at various layer sizes for Jab = 1, T = 300,
(b) the same as (a) but for Jab = −2, T = 15.

hand, the M–h curves using Jab = −2 transform to
the typical stepwise two isothermal magnetization
curves, as seen in Fig. 6b. In other words, we ob-
serve that at low enough temperatures there exists
an intermediate one-half magnetization plateau be-
sides two full saturation plateaus. This stepwise
magnetization curve with intermediate plateaus at
zero of the saturation magnetization is gradually
smeared out with increasing temperature. It is
also noteworthy that these results are in agreement
with the previous results obtained from the numer-
ical studies of the bilayer Ising model on various

Fig. 8. (a) The same as Fig. 6a but for Q, (b) the
same as Fig. 6b but for Q.

lattice geometries including interlayer frustration
and the case with a coupling with external mag-
netic field [37, 40, 41]. In addition, we have also
obtained the M–h curves using different layer sizes.
According to Fig. 7a, we have observed almost the
same behavior as in Fig. 6a. However, the M–h
curves in Fig. 7b evolve into the smooth stepwise
magnetization curve with a decreasing size of the
layers. The origin of the typical stepwise/smooth
stepwise transition in the bilayer system is related
to the interlayer exchange coupling Jab, the layer
size and temperature.

It is also interesting to show the short-range order
parameter Q plotted as a function of the magnetic
field for the same temperatures and the layer sizes
used in the previous two figures. The calculated
results corresponding to Fig. 6 are given in Fig. 8.
One can see from this figure that a short-range or-
der parameter is independent of the orientation of
the magnetic field, Q (−h) = Q(h), which is in
harmony with the corresponding bulk model [56].
Temperature-dependent minima (or pit) at h = 0
are observed in the Q > 0 region when Jab = 1
while this minima disappear and become an inter-
mediate plateau at very low temperatures in the
regime Q < 0 for Jab = −2. The depth of the pit
for Jab = 1 is proportional to temperature while it is
inversely proportional to T , as illustrated in Fig. 8a
and b, respectively. It is also seen from Fig. 8b that
the plateau (whose width becomes larger as T → 0)
evolves into a soft pit as the temperature increases.
Another aspect of these systems is given in Fig. 9,
where the corresponding Q vs. h curves are drawn
using various layer sizes at fixed temperatures. Our
results for Jab = 1 using T = 300 and Jab = −2
using T = 15 are presented in Fig. 9a and b, respec-
tively. The intermediate plateau at Q = −1 is also
observed for all layer sizes when Jab = −2 while
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Fig. 9. (a) The same as Fig. 7a but for Q, (b) the
same as Fig. 7b but for Q.

Fig. 10. (a) Relaxation curves of the order param-
etersM and Q for two different sets of values of the
rate constants: k1 = k2 = 1 (solid) and k1 = 1 and
k2 = 10 (dotted); Jab = 1.0, T = 250, h = 0.1.
(b) The same as (a) but for Jab = −3.0, T = 200,
h = 1.0.

this plateau disappears and becomes a minimum
for Jab = 1 in the middle parts of Fig. 9a and b.
In this work, the plateau and pit properties in Q–h
curves are attributed to the shape anisotropy in the
square bilayer system.

Finally, we present the time evolution of the spin
system in Figs. 10 and 11. Figure 10a and b shows
the relaxation curves of M and Q for the selected
FM and AFM interlayer interaction energies with
Jab = 1 and Jab = −3, respectively. In the figures,
the solid curves are for k1 = k2 = 1 and the dot-
ted curves are for k1 = 1, k2 = 10. If the initial

Fig. 11. Flow diagram of the bilayer system at
La = Lb = 4. The open circle indicates the sta-
ble state: (a) with T = 250, h = 0.1, Jab = 1.0 and
(b) with T = 200, h = 1.0, Jab = −3.0.

conditions are chosen near to the point of the total
disorder (M ≈ Q ≈ 0) when T = 200 and 250, the
system relaxes into ordered states as the time pro-
gresses. One can see from the blue- and red-colored
curves that the relaxation time for the long-range
ordering is much longer than for the short-range or-
dering in the FM case (see Fig. 10a), whereas in
the AFM case they are very close to each other
(Fig. 10b). We have also found that increasing the
value of k2 leads to the speeding up of the whole
relaxation process as can be seen by comparing the
dotted and solid curves in Fig. 10. The reason for
choosing k2 > k1 is that most spin systems have
a shorter relaxation time for a rotation than for
a transition [57, 58]. In this case, an “overshoot-
ing” phenomenon becomes more apparent, as can
be seen in the insets of Fig. 10a and b. The above
relaxation results can also be observed using flow
diagrams (FDs) in a two-dimensional M–Q phase
space describing the solutions of the dynamic equa-
tions. For the FDs, the system of equations (for
the nonequilibrium case) required more than two
initial values of M and Q in the PA method. By
starting with the initial values close to the bound-
ary, as time progresses in some given small steps,
the values of M and Q are computed and the point
referring to them also moves in the plane, as shown
in Fig. 11a and b for Jab = 1 and Jab = −3, respec-
tively. The crucial points in the calculated FDs cor-
respond to the stable fixed points. The coordinates
of the fixed points in the diagrams are M = 0.3,
Q = 0.7 in Fig. 11a and M = 0.23, Q = −0.37
in Fig. 11b. The open circles correspond to the sta-
ble equilibrium solution which refers to the lowest
minimum of the free energy. These are the solu-
tions of the equilibrium case equations that can be
obtained by using the iterations method.
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4. Conclusion

In this study, the pair approximation and the
path probability method of Kikuchi have been ap-
plied to study the ferromagnetism of a square lattice
bilayer system within an Ising model. The temper-
ature, magnetic field, interlayer coupling and time
evolutions of the long- and short-range order pa-
rameters have been determined. From these evolu-
tions, the most relevant physical parameters respon-
sible for ferromagnetism have been obtained. One
of these parameters is the second-order phase tran-
sition temperatures. Also, for the first-order phase
transition, both the biquadratic exchange coupling
and the single-ion anisotropy constant must be at
the same time in systems (see [50] for details).
According to these results, it is concluded that the
first and second order phase transitions are to be
seen in nanodimensional structures in the presence
of bilinear interactions, biquadratic interaction and
single ion anisotropy. With the nanosized CS-type
bilayers on the square lattice, we have observed that
the main characteristics of magnetic behavior are
related to the layer size and interlayer exchange en-
ergy coupling Jab. First, we showed that the in-
troduction of the interlayer exchange coupling af-
fects the values of critical temperatures in the ab-
sence of a magnetic field. Similarly, these temper-
atures depend explicitly on the layer size as well
as the exchange energy across a CS interface in
each layer. Second, we have been interested in
the computations of both order parameters with
a nonvanishing magnetic field and concluded that
these quantities are shifted to higher temperatures,
with the presence of a magnetic field h. There
are additional remarkable properties of M vs. h
and Q vs. h plots which are worth mentioning. At
a lower temperature regime, the isothermal magne-
tization exhibits a stepwise PM type behavior while
the short-range order shows a plateau at Q = −1
around h = 0. These properties also depend on the
layer size and Jab. We studied the relaxations of
M and Q towards stable equilibrium states. It be-
comes obvious that, for positive Jab but small h,
relaxation time forM is larger than for Q. For neg-
ative values of Jab and higher values of h, the differ-
ence between these parameters vanishes. We have
shown that dynamics is governed by two statistical
rate constants via the relaxation curves and FDs in
the two-dimensional M–Q phase space.

The investigation of magnetic properties of the
CS-type bilayer system revealed behaviors in har-
mony with some of the earlier works on the same
topic. For instance, magnetization results obtained
from the PA technique also have the same aspect
as those obtained from the Monte Carlo study of
an Ising nanoisland with a bilayer graphene-like
structure in a longitudinal magnetic field. We ex-
pect to extend the study to other bilayer sys-
tems on different lattice structures, like the bilayer
graphene-like structure, exploiting the richness of

the PA technique to obtain the complete phase dia-
grams. It has been found that the anisotropy causes
the formation of plateaus and pits in short-range
order properties. Finally, as for the short-range or-
dering results, we also remark that this PA static
and PPM dynamic studies have not been previously
considered in any investigation on the bilayer sys-
tems in the literature, to the best of our knowledge.
We hope that our detailed theoretical results will
stimulate further work, especially the study of the
time evolutions of other layered ferromagnets.
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