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An iteration calculation was carried out to study electron transport properties in Hg1−xCdxTe. We em-
ployed the modified iterative procedure so as to increase the computational accuracy in several struc-
tures. To calculate mobility, such mechanisms as deformation potential, polar optical phonon, piezo-
electric, electron–hole and ionized impurity scattering were taken into consideration. The screening
effects of the free carriers on scattering probabilities, band non-parabolicity, admixture of p-functions
and arbitrary degeneracy of the electron distribution were considered. Electron drift mobility was cal-
culated for different temperatures and doping dependences. The analysis suggested that the electron
drift mobility decreases as the temperature increases from 100 K to 300 K. The temperature depen-
dence of the MCT mobility results from the competition among various scattering mechanisms which
are temperature-dependent. In the case of low temperatures (77 K), with increasing doping concentra-
tion, the electron mobility decreases quicker when compared to the high temperatures (150 and 300 K).
Furthermore, we have concluded that the x-dependence of the Hg1−xCdxTe mobility results primar-
ily from the x-dependence of a bandgap as well as from the x-dependence of effective masses. Finally,
it can be concluded that at p-type and intrinsic semiconductor (ZT

x ≤ 1 ), the effect of the electron–hole
scattering is significant while at n-type semiconductor (ZT

x � 1), the electron–hole scattering can be
ignored.
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1. Introduction

Hg1−xCdxTe (MCT) is a zinc-blende semicon-
ductor mixed crystal, whose properties vary con-
stantly with composition between their values in
the constituent binary compounds. Because of its
bandgap tunability with x, Hg1−xCdxTe has devel-
oped to become the most important material for
detector applications over the entire IR range [1–4].
Hg0.78Cd0.22Te and Hg0.7Cd0.3Te have been used
for IR detection in 3–5 and 8–12 µm. In order
to design an electronic and optoelectronic device
based on MCT, it is necessary to know the na-
ture of transport carriers in them. The mobil-
ity [5] plays a central role in MCT devices since
it determines a photoconductive gain in a pho-
todetector [1], a dark current in a photovoltaic
detector [6], and transport properties in a photo-
electromagnetic detector (PEM) [7]. The mobility
can be calculated theoretically from the solution
of the Boltzmann transport equation. There are
some numerical methods (i.e., the variation princi-
ple and iteration method) [8] and the Monte Carlo
method [9]. The mobility of MCT has complex
forms because of the band properties, including
a small bandgap, small electron effective mass, large

non-parabolic conduction band, ionization energy,
concentration of electron states and degree of com-
pensation. Hence, the mobility of Hg1−xCdxTe is
dependent on x and temperature [1–9].

In this paper, using the iterative method, we cal-
culate the low field drift mobility in Hg0.78Cd0.22Te
and Hg0.7Cd0.3Te. Additionally, important scat-
tering mechanisms such as polar–phonon, acoustic,
piezoelectric, electron–hole, and ionized impurity
scattering are considered.

This paper is organized as follows. Details of
the iterative model and the electron mobility and
scattering rates are presented in Sect. 2, the re-
sults of the iterative calculations carried out on
Hg1−xCdxTe structures are offered in Sect. 3 and
conclusions are drawn in Sect. 4.

2. Theoretical model

The iterative technique is an approach to solve
the Boltzmann transport equation (BTE) and to
obtain the exact prediction of electron mobility
in bulk semiconductors. We modified the Arab-
shahi iterative procedure [10] and this procedure
allows us to increase the computational accuracy
in several structures. The BTE describes how

97

http://doi.org/10.12693/APhysPolA.139.97
mailto:ms_akhoundi@pnu.ac.ir


S. Najafi Bavani et al.

the electron distribution function evolves under the
action of a steady electric field E. Hence, the BTE
can be written as
e

~
E · ∇f=

∮
dk′[s′f ′ (1− f)− sf (1− f ′) ], (1)

where f and s are the probability distribution
functions and the differential scattering rates are
f = f(k) and s = s(k,k′), respectively. The change
from the equilibrium distribution function can be
employed as a perturbation which is of first order in
the electric field when the electric field is low. The
distribution in the presence of a sufficiently low field
can be assumed to be

f (k) = f0 (|k|) + g (|k|) cos(θ), (2)
where θ is the angle between k and E. Next,
f0 (|k|) = f0(k) and g (|k|) = g(k) are the equilib-
rium distribution function and the isotropic func-
tion, respectively. They are proportional to the
magnitude of the electric field, i.e.,

S (k, k′) = Sel (k, k
′) + Sinel (k, k

′) . (3)
The final elastic scattering rate Sel is the sum of the
different scattering rates which are considered as
elastic processes (acoustic, piezoelectric, electron–
hole and ionized impurity scattering). The inelastic
scattering rate Sinel is due to polar optical phonons.
When the BTE is used and all differential scattering
rates are considered, we can obtain the factor g (k)
iteratively in the perturbed part of the distribution
function f (k). Namely,

g (k) [n] =
[
− eE

~
∂f0
∂k

+
∑
j

∫
g(k′)[n− 1]

× cos(ϕ)
(
S′inel j (1− f) + Sinel jf

)
dk′
]

×
[∑

i

∫
(1− cos(ϕ))Sel idk

′ (4)

+
∑
j

∫ (
Sinel j (1− f ′) + S′inel jf

′
)
dk′
]−1

,

where g(k)[n] is the perturbation to the distri-
bution function after the n-th iteration, while
the summations are over elastic i and inelastic
j scattering processes. In the denominator the
first term of integrand for the elastic scattering
is the momentum relaxation rate. After the first
iteration, the result of the relaxation time ap-
proximation can be achieved provided that the
initial distribution is chosen to be the equilib-
rium distribution, for which g (k) is equal to 0.
It becomes obvious that convergence for low electric
fields can occur after only a few iterations. Once
g (k) has been estimated to the required precision,
then it is possible to compute such parameters as
the drift mobility. The latter is given by

µd =
~

3m∗

∫∞
0
k3g(k) 1

|E|d dk∫∞
0
k2f(k)dk

, (5)

with d defined as 1/d = m∗(∇E)/(~2k), where
~, k and m∗ represent the reduced Planck con-
stant, the wave electron vector and the effective

mass, respectively [10, 11]. In the following section,
deformation potential, piezoelectric, polar optical
phonon, ionized impurity and electron–hole scatter-
ing are analyzed.

2.1. Deformation potential scattering

Note that the acoustic modes adjust the inter-
atomic spacing. Thus all, the location of the con-
duction and the valence band edges and the energy
bandgap, differ with the location. Since the sensi-
tivity of the band structure becomes related to the
lattice spacing, the energy change of a band edge
is determined by a deformation potential. The out-
come of scattering of carriers is called the deforma-
tion potential scattering. The value of the energy
domain of scattered acoustic phonons ranges from 0
to 2~νsk, where νs is the velocity of sound. The
momentum conservation law limits the variation of
phonon wave-vector to values from 0 to 2k. The
average amount of k is of the order of 107 cm−1
and the velocity of sound on average is of the order
of 107 cm/s. Hence, the estimation 2~νsk ∼ 1 meV
turns out not substantial when it is compared to the
thermal energy at room temperature. As a result,
the deformation potential scattering of acoustic
modes can be considered as an elastic process (ex-
cept for very low temperatures). The deformation-
potential scattering rate with either phonon emis-
sion or absorption for an electron of energy ε is de-
fined applying the Fermi’s golden rule accordingly

Pab (ε) =

√
2(m∗)3D2

ackBT

πρν2~3

√
ε (1 + αε)

(1 + 2αε)

×
(
(1 + αε)2 +

1

3
α2ε2

)
. (6)

Here, Dac, kB, ρ, α and T are the acoustic de-
formation potential, the Boltzmann constant, the
material density, the nonparabolicity coefficient of
the conduction band, and the lattice temperature,
respectively. This formula clearly shows that the
acoustic scattering increases with the increasing
temperature [12, 13].

2.2. Piezoelectric scattering

The later type of electron scattering by acous-
tic modes happens when the displacements of the
atoms build an electric field through the piezoelec-
tric effect. This can happen in the compound semi-
conductors such as the II–VI and III–V materials
and include Hg1−xCdxTe which in fact has a rela-
tively large piezoelectric constant.

Ridley considered the piezoelectric scattering rate
for an electron of energy ε as

Rpz (ε) =
1

4
√
2π

√
m∗e2K2

ackBT

ε0εs~2
(1 + 2αε)

2√
γ(E)

×
[
ln

(
1 +

8m∗γ (ε)

~2q20

)
− 1

1 + ~2q20/ (8m∗γ(ε))

+
(2αε)2

2 (1 + 2αε)
2

]
, (7)
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where Kac, ε0, and εs are the average electrome-
chanical coupling constant, the vacuum permittiv-
ity constant and the relative dielectric constant of
the material, respectively. Note that they are di-
mensionless. We use an energy-wave vector relation
of the type

γ (ε) = ε (1 + αε) =
~2k2

2m∗
, (8)

with

α =
1

εg

(
1− m∗

m0

)2

, (9)

where εg is the bandgap of the material and m0 is
the mass of free electrons [14].

2.3. Polar optical phonon scattering (POP)

The dipolar electric field arising from the con-
trary displacement of the negatively and positively
charged atoms makes a coupling between the elec-
trons and the lattice which results in electron scat-
tering. As a result of this process, the scattering
rate for an electron of energy ε is

Rpo (ε) =
e2
√
2m∗ωop

8πε0~

(
1

ε∞
− 1

εs

)
×1 + 2αε′√

γ(ε)
F0 (ε, ε

′) {Nop, Nop + 1} , (10)

where Nop is the phonon occupation number and
~ωop is the polar optical phonon energy [12–14].
Now,

ε′ =

{
ε+ ~ωop (absorption),
ε− ~ωop (emission),

(11)

is the final energy state in a phonon absorption
(upper case) and a phonon emission process (lower
case). The other quantities are read as

F0 (ε, ε
′) =

1

C

[
A ln

∣∣∣∣∣
√
γ (ε) +

√
γ (ε′)√

γ (ε)−
√
γ (ε′)

∣∣∣∣∣+B

]
,

A =
[
2 (1 + αε) (1 + αε′) + α (γ + γ′)

]2
,

B = −2α
√
γγ′ [4 (1+αε) (1+αε′)+α (γ+γ′)] ,

C = 4 (1 + αε) (1 + αε′) (1 + 2αε) (1 + 2αε′) .

(12)

2.4. Intravalley impurity scattering

The Brook–Herring (BH) technique [15] is the
standard method for dealing with ionized impurity
scattering in semiconductors. The differential scat-
tering rate for ionized impurity can be written by
the BH technique as

Pii (ε) =
8πe4

√
(m∗)3

ε2s~q0
Nd

√
γ (ε)

+
1 + 2αε

1 + 4
√
2m∗~q0γ (ε)

, (13)

where q0 and Nd are the inverse screening length
and the donor concentration, respectively [13].

2.5. Electron–hole scattering

According to [16–18], the electron–hole scatter-
ing rate can be calculated similarly to the rate of
electron scattering on charged impurities when the
effective mass of the hole is much heavier than that
of the electron. The electron–hole scattering rate is
given by (12), where the concentration of charged
impurities should be replaced by the effective num-
ber of holes. For the electron–hole scattering, both
the screening function and the effective number of
holes strongly depend on the position of the Fermi
level. In this work, the electron–hole scattering was
considered as an elastic mechanism.

The main scattering parameters used in this
method are reported in Table I [19, 20].

3. Results and discussion

In this situation, we introduce normalized doping
concentration

ZT
x =

Nd

ni (x, T )
(14)

being a function of temperature T and x. Here,
Nd is the donor concentration, ni(x, T ) is the intrin-
sic concentration and ZT

x is the measure for the dop-
ing regime. It should be mentioned that for n-type
semiconductor, ZT

x is greater than one.
Figure 1 shows the energy dependence of individ-

ual and total scattering rates in Hg1−xCdxTe for
x = 0.22 and 0.3. Here, the donor concentration
is taken to be Nd = 1017 cm−3 (Z300 K

0.22 = 10) for
x = 0.22 and Nd = 1016 cm−3 (Z300 K

0.3 = 10) for
x = 0.3 at 300 K. As depicted in Fig. 1, the ion-
ized impurity scattering is dominant in the case of
low-energy but then the polar optical phonon (emis-
sion) scattering becomes dominant in more ener-
gies. Thus, the marked reduction in mobility can
be ascribed to the polar optical phonon (emission)
scattering.

TABLE I

Parameters of HgCdTe, as used in the iterative
method [19, 20].

Notation Unit x (composition in Cd)
0.22 0.3 Ref.

ν [ms−1] 2054 2077 [19]

ρ [kg/m3] 7544 7360 [19]

ε0 – 17.34 16.33 [19]

ε∞ – 12.16 11.25 [19]

Dac [eV] 9.47 9.45 [20]

ωop [eV] 0.0183 0.0184 [20]

a [Å] 6.4640 6.4653 [19, 20]

p [C/cm2] 0.028 0.029 [20]

α [eV−1] 5.3515 3.2992 calc.

εg [eV] 0.1819 0.2906 [19, 20]

m∗ – 0.0134 0.0209 [20]
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Fig. 1. Calculated electron scattering rates as a function of energy for bulk Hg0.78Cd0.22Te (black line) and
Hg0.7Cd0.3Te (red line) at T = 300 K and the donor concentration is taken to be Nd = 1017 cm−3 for x = 0.22
and Nd = 1016 cm−3 for x = 0.3: (a) acoustic phonon, (b) piezoelectric, (c) polar-optical phonon (emission),
(d) polar-optical phonon (absorption), (e) ionized impurity, (f) electron–hole, (g) total scattering rate.

The electron mobility versus temperature for
bulk Hg0.78Cd0.22Te and Hg0.7Cd0.3Te are shown
in Fig. 2. The electron drift mobility decreases with
the increasing temperature due to the increasing op-
tical phonon scattering rate. Also, we can observe
a maximum in the mobility versus temperature at
temperatures 50 K and 65 K for Hg0.78Cd0.22Te and
Hg0.7Cd0.3Te, respectively. This is because at high
temperatures (T > 50 K), the mobility is domi-
nated by lattice scattering mechanisms, which obey
the empirical functional form of T−3/2, and at low
temperatures (T < 50 K), the mobility begins to be
dominated by the impurity scattering mechanism,
which obeys the empirical function form of Tm

(where m is usually between 0 and 1.5). Given
the fact that the intrinsic concentration of HgCdTe
is a function of temperature, we have ZT

x � 1
at T < 300 K. Nonetheless, when T > 300 K and
ZT
x becomes virtually one, HgCdTe becomes in-

trinsic. As a result, the hole concentration settles
near the donor concentration Nd = 1017 cm−3 and
makes the electron–hole scattering rate increase and
eventually also makes the mobility decrease. There-
fore, it can be concluded that when the mobility
curve versus the temperature is concerned, if ZT

x is
smaller or closer to one, the mobility decreases due
to electron–hole scattering and when ZT

x is greater
than one, it has no effect on the amount of mobility
and can be ignored.

The competition between different scattering
mechanisms in the case of x = 0.3 is not serious
when compared to the case of x = 0.2. This is be-
cause its slope of the curve is less than x = 0.22
and it is due to the difference between their band
structure and effective mass.

Figure 3 shows the variation of the electron mo-
bility as a function of donor concentration. HgCdTe
is an n-type semiconductor in the doping range
1014 cm−3 up to 1018 cm−3 at 77 K by con-
sidering the intrinsic concentration ni(0.22, 77) =
1013 cm−3 and ni(0.3, 77) = 109 cm−3. Its mo-
bility decreases as the donor concentration in-
creases since the ionized impurity scattering rate
increases. Figure 3a shows that the curves of 150
and 300 K behave differently from the curve of 77 K
at ZT

x < 1 when the donor concentration is less
than ni(0.22, 150) = 1015 and ni(0.22, 300) = 1016.
Therefore, the hole concentration increases in this
range and the electron–hole scattering rate in-
creases too, leading to mobility reduction. Simi-
lar behavior is observable for x = 0.3. It can be

Fig. 2. The electron mobility versus temperature
for bulk Hg0.78Cd0.22Te (a) and Hg0.7Cd0.3Te (b)
from 10 K to 500 K and the donor concentration
is taken to be Nd = 1017 cm−3 for x = 0.22 and
Nd = 1016 cm−3 for x = 0.3.
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Fig. 3. Variations of electron mobility in terms of
concentration in T = 77, 150, and 300 K for (a)
Hg0.78Cd0.22Te, (b) Hg0.7Cd0.3Te.

concluded that for the donor concentration that
leads to ZT

x , which is less than or equal to one,
the effect of electron–hole scattering is significant
and for ZT

x , which is much larger than one, the
electron–hole scattering can be ignored (as shown
in Figs. 2 and 3).

4. Conclusions

The main conclusion that can be drawn from
this research is that the electron mobility was
obtained for zinc-blende Hg1−xCdxTe structures.
This study used the iterative method in the low ap-
plied field and such scattering mechanisms as defor-
mation potential, polar optical phonon, piezoelec-
tric, electron–hole and ionized impurity scattering
were considered. Figure 1 shows that all scattering
rates are dependent on x because of the bandgap
dependence of x excepting ionized impurity and
piezoelectric scattering rates. Also, the polar op-
tical phonon (emission) scattering is dominant in
the energy range of 0.05–0.4 eV at room tempera-
ture and low electric field. As evident from Fig. 2,
the variation of the mobility — as a function of
temperature — indicates how different scattering
mechanisms compete with one another at different
temperature ranges. Due to impurity and the polar
optical phonon (emission) scattering characteristics,
the mobility shows its maximum at about 50 K.
However, the slope in Fig. 2b is less than that
in Fig. 2a since there is a competition between dif-
ferent scattering mechanisms.

The analysis also suggested the low-field electron
mobility is higher for Hg1−xCdxTe structures with
lower x primarily because of the x-dependence of
a bandgap, as well as the x-dependence of effective
masses. From the analysis of Figs. 2 and 3, this
can also be concluded that the effect of electron–
hole scattering is significant at ZT

x ≤ 1 and can be
neglected at ZT

x � 1.
It is worth to remember that ZT

x is a simple crite-
rion for the interpretation of the dependent simul-
taneous mobility to doping and temperature.
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