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Diamagnetism of Electron Gas
on Surface of Semiconductor Nanotube

G.I. Rashba

Department of Theoretical Physics named after I.M. Lifshits
Kharkiv National University named after V.N. Karazin,
4 Svobody Sq., Kharkiv, 61022, Ukraine

Received: 25.08.2020 & Accepted: 27.10.2020

Doi: 10.12693/APhysPolA.139.66 ∗e-mail: georgiy.i.rashba@gmail.com

The density of states of electrons on the surface of a semiconductor cylindrical nanotube and the grand
thermodynamic potential in a longitudinal magnetic field are obtained in terms of the Jacobi elliptic
theta function. At low temperatures, the diamagnetic moment of the electron gas on the tube in a weak
magnetic field is calculated.
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1. Introduction

Nanotubes exhibit a whole range of important
magnetic properties which, along with geometric
parameters, give grounds for their use as a promis-
ing structural material for modern electronics due
to the fact that miniaturization of electronic de-
vices directly entails an increase in current densi-
ties [1–4]. As a result, traditional materials can no
longer be used.

Twenty years before the discovery of carbon
nanotubes, the quantization of the magnetic flux
in a cylindrical normal tube was discovered [5].
The magnetic moment of the electron gas on its
surface was then calculated. The discovery of car-
bon and semiconductor nanotubes was discussed in,
e.g., [6] and their magnetic properties were consid-
ered in, e.g., [1, 2, 7].

When an electron rotates around the walls of
a nanotube, a magnetic response occurs, known as
the orbital magnetic moment [4]. The orbital mag-
netism of carbon nanotubes was studied by Ajiki
and Ando [8] while the magnetic response of a semi-
conductor nanotube was examined in [9]. The prob-
lem of the magnetization of nanostructures with
cylindrical symmetry is closely related to the prob-
lem of persistent currents in quantum rings and
nanotubes [10]. These currents create an orbital
magnetic moment which is called diamagnetic [3].

The Aharonov–Bohm effect in nanotubes was in-
vestigated, e.g., in [11]. The exchange energy of
an electron gas on a tube in a longitudinal magnetic
field, in turn, was considered in [12]. The thermo-
dynamic functions of an electron gas on the surface
of a semiconductor nanotube in a magnetic field,
in particular the spin magnetization of an electron

gas, were investigated in [13]. Further, excitons in
cylinder conductors were studied in [14] while plas-
mons in nanotubes with a superlattice were exam-
ined in [15]. In [16–19], the theory of the Landau–
Silin electron spin waves on a tube in a magnetic
field was presented and it was reviewed in [20, 21].
In turn, the spectra of plasma waves in the elec-
tron gas on the surface of a semiconductor nano-
tube with a superlattice in a parallel magnetic field
were studied in [22]. The magnetic properties in
the metal conduction mode were discussed in con-
nection with the problems of persistent currents
and magnetoresistance in [23–25]. In [23], the per-
sistent current was calculated taking into account
the scattering of electrons by the δ-potential of
the impurity atom. Moreover, the properties of car-
bon nanotubes in the Luttinger model were studied
in [24] while the magnetoresistance of nanotubes in
a transverse magnetic field was considered in [25].

In the mentioned papers, the Landau diamag-
netism was not considered within the framework
of the simplest model. The model is assumed to
be an infinitely long and thin tube containing no
impurity atoms. The adequacy of this model —
due to the fact that almost all electronic devices are
manufactured using nanotubes — is based on ideas
about the structure and properties of ideal defect-
free nanotubes [4]. The effective mass approxima-
tion and the Laplace transform for the density of
states is employed [21].

This paper is organized as follows: in Sect. 2,
the density of states and the grand thermodynamic
potential of an electron gas on a tube are ex-
pressed in terms of the Jacobi elliptic theta func-
tion. In Sect. 3, the diamagnetic moment of an elec-
tron gas on the tube surface is obtained.
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2. Density of states
and thermodynamic potential

in terms of Jacobi elliptic Θ3 function

The conduction electron energy spectrum in
semiconductor nanotubes has a band nature.
A small electron density near the band edge per-
mits to use the effective mass approximation. Elec-
tron energy on a tube of radius a in a magnetic field
is [13]:

εmkσ = ε0

(
m+

Φ

Φ0

)2

+
k2

2m∗
+ σµBB, (1)

where m∗ is the effective mass of the electron,
µB = e/(2m∗c) is the Bohr magneton, m and k are
the projection of the angular momentum and elec-
tron momentum on the tube axis, σ = ±1 is the spin
quantum number, ε0 = 1/(2m∗a

2) is the rotational
quantum, Φ = πa2B is the flux of magnetic induc-
tion B in the tube (vector B directed along the axis
of the tube) and Φ0 = 2πc/e is the flux quantum [5].
The quantum constant is hereinafter taken as equal
to unity.

The grand thermodynamic potential of an elec-
tron gas is [26]:

Ω (S, T, µ,B) = − 1

β

∞∫
εmin

dεν (ε) ln
(
1 + eβ(µ−ε)

)
,

(2)
where β = 1/(kBT ) is the inverse temperature, kB is
the Boltzmann constant, µ is the chemical poten-
tial of the gas (where εmin = −µBB), S = 2πaL is
the surface area of the tube length L:

ν (ε) =
∑
mkσ

δ (ε− εmkσ) (3)

is the density of states.
Using the Laplace transform, we represent

the density of states in the form [13, 21, 27–30]:

ν (ε) =
1

2π i

b+i∞∫
b− i∞

dβz (β) eβε, (4)

where
z (β) =

∑
mkσ

e−βεmkσ (5)

is the single-particle partition function, β is
the complex variable and b > 0. By substitut-
ing (1) into (5), we obtain

z (β) =
L

π

√
2πm∗
β

ch (βµBB)

×
∞∑

m=−∞
exp

(
−βε0

(
m+

Φ

Φ0

)2
)
. (6)

The sum included above is [21, 31]:
∞∑

m=−∞
exp

(
−βε0

(
m+

Φ

Φ0

)2
)

=

√
π

βε0
(7)

×

(
1 + 2

∞∑
l=1

exp

(
−π

2l2

βε0

)
cos

(
2πl

Φ

Φ0

))
.

The factor cos (2πlΦ/Φ0) describes
the Aharonov–Bohm oscillations of thermody-
namic quantities considered in [13]. The factor
included in brackets on the right-hand side of (7)
is related to the Jacobi elliptic theta function Θ3

by the relation [31]:

Θ3 (υ, x) = 1 + 2

∞∑
l=1

exp
(
−π2l2x

)
cos (2πlυ) ,

(8)
where υ = Φ/Φ0 and x = 1/(βε0). As a result,
the density of states (4) can be related as well to
the function Θ3, i.e.,

ν (ε) =
ν0
2π i

b+i∞∫
b− i∞

dβ

β
ch (βµBB)Θ3

(
Φ

Φ0
,

1

βε0

)
eβε.

(9)
Here, ν0 = m∗S/π means the density of states of
a two-dimensional electron gas in the plane.

The grand thermodynamic potential in terms of
an elliptic theta function is

Ω = − ν0
2π i

∞∫
εmin

dε

b+i∞∫
b− i∞

dβ

β2
ch (βµBB)

×Θ3

(
Φ

Φ0
,

1

βε0

)
ln
(
1 + eβ(µ−ε)

)
eβε. (10)

After double integration over parts of the integral
over ε, (10) can be presented in the form

Ω (S, T, µ,B) =

∞∫
εmin

dε

(
− df (ε)

dε

)
Ω (ε) , (11)

where

Ω (ε) = − 1

2π i

b+i∞∫
b− i∞

dβ

β2
z (β) eβε, (12)

where f (ε) is the Fermi–Dirac function.

3. Landau diamagnetism

In a general case, it is impossible to separate
in (10) the monotonic and field-oscillating with B
terms in the thermodynamic functions of an elec-
tron gas. As in a three-dimensional case [26], it is
possible in a weak magnetic field, when µBB � kBT
and Φ � Φ0. From (8) and (9) it follows that
the induction of the magnetic field B is included
in the hyperbolic cosine and factor cos(2πlΦ/Φ0)
only. The factor ch(βµBB) is associated with the
Pauli paramagnetism while the factor cos(2πlΦ/Φ0)
is associated with the Aharonov–Bohm oscillations
and the Landau diamagnetism. The Aharonov–
Bohm oscillations on a tube were studied in [13].
In the present paper, we focus on the Landau dia-
magnetism only.

Under the conditions µBB � kBT and
Φ � Φ0, we select in the expansion ch(βµBB) and
cos(2πlΦ/Φ0) the terms quadratic over the field. As
a result, we obtain the paramagnetic zp(β) and dia-
magnetic zd(β) partition functions
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zp (β) =
ν0
2
β(µBB)2, (13)

zd (β) = −
ν0π

2

βε20
(µBB)2

∞∑
l=1

l2 exp

(
−π

2l2

βε0

)
.

(14)
The coefficient entering here is expressed through
the Bohr magneton. The series in (14) is equal to
∞∑
l=1

l2 exp

(
−π

2l2

βε0

)
= − ∂

∂
(
π2

βε0

) ∞∑
l=1

exp

(
−π

2l2

βε0

)
.

(15)
The asymptotics of the series on the right-hand side
of (15) and the functions Θ3 are known [32]:

∞∑
l=−∞

e−l
2x =

{ √
π
x

[
1 + 2 exp

(
−π

2

x

)]
, x� 1

1 + 2 exp(−x), x� 1.

(16)
The small-value x corresponds to the low-
temperature region βε0 � 1. In this area, we have

∞∑
l=1

l2 exp

(
−π

2l2

βε0

)
=

1

4π
5
2

(βε0)
3
2 . (17)

By substituting this expression into (14), we obtain

zd (β) = −
ν0
4

√
β

πε0
(µBB)2. (18)

The substitution of this expression into (12) gives

Ωd (ε) =
ν0
4

(µBB)2
√
πε0

1

2π i

b+i∞∫
b− i∞

dβ

β2
eβε. (19)

The integral entering here is calculated by a loop C0

in the complex plane of the variable β, going around
the branch point β = 0 (Fig. 1) [33]. It is calculated
using the well-known formula

1

Γ (z)
=

1

2π i

∫
C0

du
eu

uz
. (20)

As a result, we obtain

Ωd (ε) =
ν0
2π

√
ε

ε0
(µBB)2, (21)

where the equality Γ
(
3
2

)
= 1

2

√
π is taken into

account. Substituting (21) into (11), we obtain
the diamagnetic contribution to the grand thermo-
dynamic potential at low temperatures

Ωd =
ν0
2π

√
µ

ε0
(µBB)2. (22)

The diamagnetic moment is

Md = −
∂Ωd
∂B

= −ν0
π

√
µ

ε0
µ2
BB. (23)

The meaning of this expression is that, with the ap-
pearance of the Aharonov–Bohm flow, circular
persistent currents arise in the tube on its sur-
face [3, 4, 34]. They create a magnetic field di-
rected, according to Lenz’s rule, in the direction
opposite to the Aharonov–Bohm field. The ratio of
this moment to the paramagnetic moment [13] is
equal to 1

π

√
µ
ε0
. It contains both the material and

geometric parameters of the nanotube.

Fig. 1. The contour for calculating the integral (19).

4. Discussion

The equilibrium properties of the electron gas in
nanotubes, as we have just seen, are mainly deter-
mined by the electron energy spectrum. This spec-
trum is, in turn, due to the geometry of the system.

In the scientific literature, for the theoretical
study of the electron spectra of carbon nanotubes
a model is used, which is obtained from the tight-
binding approximation [1, 2], not taking into ac-
count the local curvature of the tube. The ad-
vantage of this model is that the crystal symmetry
of the nanotube is adequately taken into account,
while its disadvantage is associated with the neglect
of the curvature of the tube. The energy band
structure of individual nanotubes corresponds to
the structure of a graphene sheet after the imposi-
tion of the Born–von Karman boundary conditions
arising from its rolling into a cylinder. Thus, all
armchair nanotubes are expected to exhibit metallic
conduction, similar to the behavior of 2D graphene
sheets [1, 2]. The electronic properties of carbon
nanotubes, in particular their magnetic properties,
have been discussed theoretically based on a kp
scheme in [8]. The magnetic moment is negative
(diamagnetic) and its absolute value increases as
a function of the magnetic field [8]. This result is in
qualitative agreement with (23) for the diamagnetic
moment obtained in this paper.

In this article, the Dirac energy spectrum of
an electron on the surface of a nanotube is not
used. We use the spectrum (1). This approxima-
tion allows to describe the properties of such sys-
tems qualitatively and often quantitatively. Thus,
the results obtained in this paper can be used to de-
scribe the magnetic properties of armchair carbon
nanotubes in the metal conduction regime.

5. Conclusions

The basic thermodynamic functions of an elec-
tron gas on the surface of a semiconductor nano-
tube in a magnetic field were calculated in [13].
It was shown, in particular, that thermodynamic
quantities experience the Aharonov–Bohm oscilla-
tions with a change in the magnetic flux in the tube
as well as oscillations existing in the absence of
a magnetic field. They are due to quantization
of the energy of the circular motion of electrons
on the tube and the passage of quantized levels
through the Fermi boundary when the parameters
of the tube change. The spin magnetic moment of
electrons was calculated in [13] but the diamagnetic
moment was not calculated there.

68



Diamagnetism of Electron Gas. . .

In this paper, the density of states and the grand
thermodynamic potential of an electron gas on
a semiconductor tube are expressed in terms of
the Jacobi elliptic theta function. In a weak mag-
netic field at low temperatures, the diamagnetic mo-
ment of the electron gas is calculated. These results
may be useful in studying the magnetic properties
of a heterojunction with a two-dimensional electron
gas bent into a cylinder.

The results obtained in this article are of con-
siderable scientific interest. They can be used as
the basis for the effective application of nanotubes
in various fields of science and technology, e.g., for
high-density magnetic recording as well as for cre-
ating polymer and composite materials with a given
magnetic response.
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