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In magnetic hyperthermia, the effectiveness for tumour cell destruction is measured by the specific loss
power. Theoretically, within the medically accepted ranges for the amplitude and frequency of the
applied magnetic field, if energy losses in nanofluids occur through magnetic relaxation processes, the
specific loss power is calculated based on the linear response theory. In this theory, the specific loss
power depends on the effective magnetic relaxation time of the colloidal nanoparticle system which
involves either the Brownian relaxation time or the Néel relaxation time. All theoretical approaches to
the Néel relaxation time show that it depends directly on the diffusional relaxation time and inversely
on the smallest non-vanishing eigenvalue of the Fokker–Planck equation, where the damping constant
is expressed one way or another by a value, generally unknown, which in most cases is approximated.
This paper shows through a numerical experiment how the damping constant influences the specific
loss power, referring to some benchmarks on how to choose the most accurate value of this constant
in the case of magnetite nanoparticles, mostly used in magnetic hyperthermia applications. Following
an uninspired choice of the damping constant value, the simulated or calculated data can deviate from
the experimentally determined data, even if, in general, the model is correct and as close as possible to
reality.
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1. Introduction

The phenomena of magnetic relaxation in
nanoparticle systems are intensively investigated to-
day, especially for their biomedical implications, the
most important of which being the cancer therapy
by hyperthermia using magnetic nanofluids [1–3].

The effectiveness of a colloidal system of mag-
netic nanoparticles (MNPs), when converting the
alternating magnetic field energy into heat able to
rise the local temperature in the tumour tissue, is
of major importance for the cancer therapy through
magnetic hyperthermia. The system usually con-
sists of MNPs dispersed in an aqueous medium, also
known as a nanofluid. The heat transfer from the
alternating magnetic field, whose parameters (am-
plitude, frequency) are ranging within medically ac-
cepted limits [4], to the tissue loaded with properly
functionalized MNPs can be carried out by various
mechanisms, depending on the type and size of the
MNPs. In the case of nanoparticles with a mag-
netic oxide (usually ferrites) with an average size
of less than 30 nm (currently considered to be the
most suitable for such purposes), two heat trans-
fer mechanisms must be considered [5]: magnetic
hysteresis losses and magnetic relaxation processes.
The effective mechanism depends on a relationship

between the magnetic relaxation time τ , and the in-
verse of the alternating field frequency 1/f , which
defines the time window τM of magnetic excita-
tion (τM can also be a measurement time window).
In this regard, two regimes should be mentioned
here [5]: a static regime τ � τM , wherein the main
heat transfer is made by magnetic hysteresis losses
and a dynamic regime τ � τM , wherein the main
heat transfer is made by magnetic relaxation phe-
nomena. The relaxation time depends on the vol-
ume of MNPs and, in the case of finite-size MNPs,
on polydispersity. Both heat transfer mechanisms
mentioned above can contribute: the first one for
nanoparticles larger than a critical size and the sec-
ond one for finer nanoparticles.

The effect of an external magnetic field on the
longitudinal relaxation time of a nanoparticle sys-
tem with uniaxial magnetic anisotropy can gener-
ally be studied by calculating the smallest non-
vanishing eigenvalue (escape rate) using the Fokker–
Planck equation, for the evolution in time of
the magnetic moment density orientation [6]. The
first study of this kind was carried out by Brown [7],
whence the Brownian relaxation time model re-
sulted, besides the simple Néel relaxation time
model. A more general perturbation approach of
the simple Néel expression is introduced by certain
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models, such as the model of Aharoni and Eisen-
stein [8, 9], the model of Jones and Srivastava [10]
and the model of Bessais et al. [11]. Later, Coffey
studied the effect of an oblique magnetic field on the
magnetic nanoparticle system [12] and, recently, the
effect of a randomly oriented field has been stud-
ied [6]. Another theoretical approach to magnetic
nanoparticle systems has been made by static and
time-dependent micromagnetic simulations on var-
ious nanoparticle configurations [13].

The damping constant appears in all the expres-
sions and models related to the Néel relaxation
time. This paper aims through a numerical ex-
periment to study how the value of this constant
influences the specific loss power (SLP) as well as
to constructively comment on how to choose this
value, so as to be as close as possible to physical
reality.

2. Influence of damping constant on SLP

A monodomain nanoparticle is in a uniform mag-
netisation state for any field applied. Each mon-
odomain nanoparticle is characterised by a mag-
netic moment µi which usually is given by [14]:
µi = Msνiêi, (1)

where Ms is the spontaneous magnetisation, νi is
the particle volume and êi is the unit vector of the i-
th magnetic moments.

The process by which all nanoparticles return to
thermodynamic equilibrium is called the magnetic
relaxation. In a system with ultrafine magnetic
nanoparticles, the alignment of the magnetic mo-
ments in the direction of the external field can oc-
cur in two distinct ways [15]. In the first case, the
magnetic moments of the monodomain nanoparti-
cles remain fixed and under the action of the field,
each nanoparticle rotates so that the orientation of
the magnetic moment approaches the direction of
the field. In the second case, the magnetic moment
of the nanoparticle rotates while the nanoparticle
remains fixed. Due to these two possibilities, two
relaxation processes occur: the Brown relaxation,
correlated with the nanoparticle rotation, and the
Néel relaxation, correlated with the magnetic mo-
ment rotation inside the nanoparticle. The effective
relaxation time for the i-th nanoparticle can be de-
scribed as follows [16]:

1

τ ieff

=
1

τ iN
+

1

τ iB
, (2)

where τ iN is the Néel relaxation time and τ iB is the
Brownian relaxation time.

For spherical particles, the Brownian relaxation
time is usually described by [17]:

τ iB =
3νiHη

kBT
, (3)

where kB is the Boltzmann constant, T is the tem-
perature, νiH is the hydrodynamic volume of the
i-th nanoparticle and η is the dynamic viscosity
coefficient.

The most important feature of the magnetic
dipolar interaction is its long range character.
In the presence of an external magnetic field, each
nanoparticle is affected by a local magnetic field.
This field is the vectorial sum of the external mag-
netic field applied Hext and the internal magnetic
dipolar field Hid determined by the magnetic dipo-
lar interactions among the nanoparticles [14], i.e.,
Hi = Hext +Hid, (4)

where

Hid =
1

4π

∑
j,j 6=i

µj
r3
ij

[
3r̂ij (êi · r̂ij) − êj

]
, (5)

where rij is the distance between the centres of two
nanoparticles, r̂ij is the versor of the direction con-
necting the i-th and j-th nanoparticle, and êi is the
unit vector of the i-th magnetic moments.

An analytical Coffey solution for external mag-
netic fields [12] can be adapted as the Néel relax-
ation time in order to take into account the mag-
netic dipolar field acting on a nanoparticle. Further,
it can be discretized [14], working at the nanopar-
ticle level. We use the following notations:

hi =
µ0

2

MsHi

Keff
i

(6)

and

σi =
Keff
i νi
kBT

, (7)

where µ0 is the vacuum magnetic permeability,
Keff
i is the effective magnetic anisotropy constant

of the i-th nanoparticle and Hi is assessed using (5)
and (6). Thus, the free diffusion time of magnetisa-
tion τ i0N for low damping [18] is

τ i0N =
νiMs

2γαkBT
, (8)

where α is the damping constant and γ is the gyro-
magnetic ratio.

In (8), every value for MNP is known, except
for α. Our calculation shows the dependence of
the relaxation time on the magnetic damping con-
stant α. With these conditions, the relaxation time
relation for an oblique magnetic field is [18]:

τ iN (oblique field) =

4πτ i0N
(
S−1
i1 + S−1

i2

)√
c
(1)
i1 c

(1)
i2 e−∆Vi12 +

√
c
(2)
i1 c

(2)
i2 e−∆Vi21

, (9)

where ∆Vi12 and ∆Vi12 are the normalized energy
barriers for magnetic moment re-orientations. One
also has

c
(p)
i1 = 2σi cos(2θip) + hi cos(θip − ψi),

c
(p)
i2 = 2σi cos2(θip) + hi cos(θip −Ψi) (10)

where p = 1, 2 while θip is the solution of the tran-
scendental equation sin(2θi) = 2hi sin (Ψi − θi).

If hi < hic(Ψi) < 1 (where Ψi is the angle be-
tween Hi and the easy anisotropy axis of the i-th
nanoparticle), then [18]:
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cos(θi1,2) = ±1 ∓ 1

2
h2
i sin2(ψi) + h3

i sin2(ψi) cos(ψi) ∓
13 + 11 cos(2ψi)

16
h4
i sin2(ψi)

+
3 + cos(2ψi)

2
h5
i sin2(ψi) cos(ψi) ∓

183 + 156 cos(2ψi) − 19 cos(4ψi)

64
h6
i sin2(ψi) + . . . (11)

∆Vi12 = σi

[
1 − 2hi

(
sin(Ψi) − cos(Ψi)

)
+ h2

i +
h3
i

2
sin(2Ψi)

(
cos(Ψi) − sin(Ψi)

)
+
h4
i

2
sin2 2Ψi

+
h5
i

32
sin(2Ψi)

(
7 cos(Ψi) − 3 cos(3Ψi) − 7 sin(Ψi) − 3 sin(3Ψi)

)
+
h6
i

2
sin2(2Ψi) + . . .

]
(12)

∆Vi21 = σi

[
1 − 2hi

(
sin(Ψi) + cos(Ψi)

)
+ h2

i +
h3
i

2
sin(2Ψi) (cosΨi + sin(Ψi)) +

h4
i

2
sin2(2Ψi)

+
h5
i

32
sin(2Ψi)

(
7 cos(Ψi) − 3 cos(3Ψi) + 7 sin(Ψi) + 3 sin(3Ψi)

)
+
h6
i

2
sin2(2Ψi) + . . .

]
(13)

Si1,2 = σi
√
hi sin(Ψi)

[
16 − 104hi

3
sin(Ψi) + h2

(
1 − 21 cos(2Ψi)

)
+
h3
i

2
sin(Ψi)

(
45 + 51 cos(2Ψi)

)
+ . . .

]
±2πσih

2
i sin(2Ψi)

[
4 − 3hi sin(Ψi) − 2h2

i sin2(Ψi) + . . .
]
. (14)

The normalized effective energy barriers for the
nanoparticle magnetic moment re-orientations are
defined as

∆V eff
i =

∆Vi12 + ∆Vi21

2
. (15)

The relation (9) can be now expressed as
1

τ iN (oblique field)
=

Si1Si2
4πτ i0N (Si1 + Si2)

×
[√

c
(1)
i1 c

(1)
i2 e−∆Vi12 +

√
c
(2)
i1 c

(2)
i2 e−∆Vi21

]
=

f12 e−∆Vi12 + f21 e−∆Vi21 , (16)
where f12 and f21 are the attempt frequency factors.

The specific loss power (SLP) is the electromag-
netic power lost per nanofluid mass unit [19], ex-
pressed in watt per kilogram. In biomedical appli-
cations, where the energy losses occur through mag-
netic relaxation processes, SLP can be calculated in
the framework of the linear response theory [20].

Thus, for the nanofluid [21] one applies:

SLP =
p

fρ
= 3πµ0νH

ext
0

Ms

ρN

×
N∑
i=1

(
coth(ξi) −

1

ξi

)
2πντ ieffεi

1 +
(
2πντ eff

i

)2 , (17)

where the magnetic volume fraction of the nanopar-
ticles reads as

fm =
f

1 + 2δ
dm−2δ

. (18)

Here, ρ is the density of the nanoparticle material,
f is the volume fraction of nanoparticles, δ is
the coating thickness, ν is the frequency, Hext

0

is the magnitude of the applied field, N is the
number of nanoparticles and τ eff

i is the effective
magnetic relaxation time for the i-th nanoparticle.
Therefore, it follows that

ξi =
µ0ν0MsH

ext
0

kBT
(19)

and εi is given by [22–25]:

εi =

(
σi

3.4

)1.47
cos2(ψi) + 1

3(
σi

3.4

)1.47
+ 1

. (20)

As can be deducted from (6)–(8), the damp-
ing constant influences the Néel relaxation time
through the free diffusion time of magnetisa-
tion τ i0N . In many specialized works the dependence
of τ i0N on the damping constant α (e.g., such as (7))
is provided in the range 10−8 ÷ 10−12 s [26, 27].
The width of this range appears an inconvenience
in the case of the numerical experiments which are
working with analytical expressions of the Néel re-
laxation time. Therefore, choosing a value for the
damping constant α can greatly influence the re-
sults, as will be shown below.

3. Results and discussion

The influence of the magnetic nanoparticle
system properties on the Néel relaxation time
was studied experimentally by magnetorelaxometry
(MRX) measurements [28]. Thus, it was shown that
there is a clear trend of α decrease with decreasing
size for thin films of iron oxide [29]. This effect is
also seen in other materials [30, 31] and in [29] an
upper limit for α in iron oxide thin films of 0.0365
was found. In the case of MRX measurements made
on iron oxide particles, there is estimated an inter-
val for the damping constant ranging from 0.0005 to
0.002 [14], i.e., significantly lower values compared
to the value of 0.07 for this bulk material.

For our numerical study, we consider the case
of a colloidal system consisting of 500 spherical
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Fig. 1. Positions of nanoparticles inside the test
cube.

Fig. 2. SLP versus the damping constant α.

magnetite nanoparticles with spontaneous magneti-
sation of 4.46 × 105 A/m and uniaxial magnetic
anisotropy of 2.5 × 104 J/m3. The nanoparti-
cles whose sizes have a lognormal distribution with
the average diameter dm = 10 nm and standard de-
viation 0.1dm are dispersed in water whose dy-
namic viscosity is 8.9 × 10−4 Pa s. The temperature
is 300 K and the coating thickness of the nanoparti-
cles is 3 nm. We consider the volume fraction of the
nanoparticles f = 0.05. The external magnetic field
intensity is set to 15 kA/m along the z axis and the
frequency to 300 kHz. These parameters fall within
the allowed range for biomedical applications.

We consider a random placement of the nanopar-
ticles in a face-centred cubic grid with random ori-
entations of the anisotropy axes and nanoparticle
magnetic moments (see Fig. 1).

As a numerical calculation procedure, we use the
relations (3), (9) and (2) to calculate the Néel relax-
ation time, the Brownian relaxation time, and the
effective magnetic relaxation time, respectively, and
(16) to calculate SLP. The values of the damping
constant α vary between 0.0005 and the correspond-
ing value for bulk material in the case of magnetite.
Thus, we obtain the results presented in Fig. 2.
It can be seen that the variation of the damping con-
stant values quite strongly affects the SLP values

Fig. 3. SLP versus the damping constant α over
the range of variation suggested by the MRX ex-
periments.

from about 268 458 W/kg to 3854 W/kg, requir-
ing therefore paying an increased attention to the
value used in the calculations related to the damp-
ing constant α.

Figure 3 shows the variation of SLP versus
the damping constant α over a range of values
closer to that suggested by the MRX experiments
carried out on magnetite nanoparticle systems,
0.0005–0.002 [14].

It turned out that the values for SLP simulated
with the model used in this paper for the range
of damping constant values suggested by the MRX
experiments carried out on magnetite nanoparticle
systems, are in agreement with the values measured
on such nanoparticle systems existing in the litera-
ture [32–35].

4. Conclusions

This paper provides a numerical experiment
based on a simulation model of how the values of the
damping constant α influence the values of SLP in
the case of systems of the nanoparticles suspended
in a liquid matrix. The positions, orientations of
the anisotropy axes and the orientations of the mag-
netic moments of the nanoparticles are considered
to be random. The Néel relaxation time calculated
using the Coffey model in the oblique magnetic field
adapted to the local magnetic field on the nanopar-
ticle and the Brownian relaxation time calculated
using Brown’s theory are entering into an effective
magnetic relaxation time that influences SLP cal-
culated based on the linear response theory (LRT).

Following the numerical simulations, we saw that
SLP is strongly influenced by the value of the damp-
ing constant α and, moreover, the SLP values sim-
ulated with the values of the damping constant α,
suggested by the MRX experiments on magnetite
nanoparticle systems, are in agreement with the ex-
perimentally determined SLP values published in
the literature. Choosing a value for the damp-
ing constant α appropriate for the bulk material
leads to results far from reality even if the numeri-
cal simulation models quite accurately describe the
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behaviour of the real system. Thus, it is recom-
mended to choose for the damping constant α only
values that match the values suggested by the MRX
experiments carried out on nanoparticle systems.

The results obtained in this paper are useful for
optimising the numerical modelling of the process
of magnetic hyperthermia with nanoparticles, the
process intensively studied by the scientific commu-
nity because it is of real interest as a non-invasive
method used in cancer therapy.
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