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We present an approach based on local representation of frequency spectrum to calculate the surface
contribution to thermodynamic properties of solids. The Green function theory of isolated point defects
is discussed in detail which is also applicable to vibrations of surface atoms. The expression for local
spectra of atoms is obtained in terms of the same site Green functions. The surface contribution to
thermodynamic properties of solids is expressed in terms of the local frequency spectra of atoms in
a few surface layers and the frequency spectrum of the infinite crystal satisfying the cyclic boundary
condition. The usefulness of the formulation along with the ability of the recursion method to calculate
local spectra without a recourse to detailed frequency calculations of slabs is emphasized. As an
illustrative example, we present the surface contribution to low temperature lattice specific heat of
tungsten due to (100) surface.
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1. Introduction

Generally, the vibrational properties of crystals
are discussed on the assumption that the displace-
ments of atoms follow the cyclic or periodic bound-
ary condition of Born and von Karman. Further,
it is assumed that by the use of these unphysi-
cal boundary conditions, a negligible error is in-
troduced in the calculation of the frequency spec-
trum and the vibrational contribution to extensive
properties of the crystal, since for any bulk sample
the number of degrees of freedom is essentially in-
finite. However, the atoms near a free surface of
a real crystal are subjected to different forces than
the atoms in the bulk since an atom in the sur-
face layers has fewer neighbours when compared to
an atom in the interior of a crystal. As a conse-
quence, the vibrational properties of surface atoms
are different from those of the bulk atoms. For fi-
nite crystals, when the crystal size is small enough,
the ratio of the surface area to the volume of the
crystal is not negligible and therefore the modifi-
cation in the frequency spectrum due to free sur-
faces must be taken into account. This modification
involves an additional contribution from an essen-
tially two-dimensional crystal. The modification in
the frequency spectrum due to the surface alters
the temperature dependence of the thermodynamic
functions of the crystal. For instance, the contri-
bution to low temperature lattice specific heat due
to surfaces varies as T 2 rather than the usual T 3

dependence for the cyclic crystal. This is because
in the limit of low frequencies, the frequency spec-
trum for a two-dimensional lattice is expected to
be proportional to ω rather than ω2 dependence for
the three-dimensional crystal.

Most of the earlier attempts to evaluate surface
contribution to thermodynamic functions of solids
concern the lattice specific heat. The earliest at-
tempts were based on the elasticity theory [1, 2].
Notable among the elastic calculations is the one by
Dupuis et al. in 1963 [3] who considered a slab of an
isotropic elastic solid bounded by two free surfaces
perpendicular to z-axis. However, these authors did
not calculate the normal mode frequencies and the
frequency spectrum of the slab. Instead, they re-
placed the sum over normal mode frequencies by
a contour integral and obtained a remarkable sim-
ple expression for the surface contribution to lattice
specific heat

cs(T ) = 3πSξ(3)
k3BT

2

}2
2c4t − 3c2t c

2
l + 3c4l

c2t c
2
l (c2l − c2t )

, (1)

where kB is the Boltzmann constant, cl and ct are
the speed of the sound for longitudinal and trans-
verse waves, S is the surface area of the crystal and
ξ(3) is the Riemann zeta function. From some sim-
ple lattice models of isotropic solids, analytic re-
sults have been obtained [4] which have a strong
resemblance with (1). The only case which has
been discussed analytically is that of crystals with
hexagonal symmetry [5]. The lattice dynamical

25

http://doi.org/10.12693/APhysPolA.139.25
mailto:pnr1346@rediffmail.com


P.N. Ram et al.

calculations concerning physically realistic models
of crystals are purely numerical in nature where
a semi-infinite slab consisting of a comparatively
small number of atomic layers is considered [6].
In the lattice dynamical approach, the normal mode
frequencies are obtained for the slab-shaped crys-
tal by solving the appropriate eigenvalue equation
and thermodynamic functions are obtained by di-
rect summation over frequencies. The programme
has been implemented by a number of researchers to
calculate the surface contribution to lattice specific
heat [7, 8]. The main difficulty in this approach
is the smallness of the slab. As it is, at lower
temperatures the dominant contribution to specific
heat comes from phonons with longer wavelengths
so that a situation arises where the wavelength of
the phonons is long enough to be comparable to the
dimensions of the slab, putting a serious question
mark over the validity of the calculation. The lim-
itation of the lattice dynamical approach based on
a semi-infinite slab has been discussed by Portz and
Maradudin [9] who have used the elasticity theory
to calculate the surface contribution to the low-
temperature specific heat of a cubic crystal.

In the present paper, we follow an alternative
approach based on local representation of the fre-
quency spectrum of a crystal. The surface contri-
bution to the thermodynamic function of a solid is
expressed in terms of the local frequency spectra of
atoms in the few surface layers and the frequency
spectrum of the infinite crystal satisfying the cyclic
boundary condition. This is similar to the calcu-
lation of changes in thermodynamic properties due
to defects in terms of local frequency spectra of the
defect and a few of its neighbors [10]. The local
spectra of surface atoms may be obtained in terms
of the Green function of a crystal slab [11, 12]. How-
ever, this type of exact calculation of the Green
function in the case of a semi-infinite slab would
be difficult in complicated cases such as high in-
dex surfaces with stepped structures [13] or even
in an approximate slab calculation (see e.g. [14]).
In fact, the latter slab calculations [15, 16] take
much thicker slabs but the problem of hybridization
between surface states of the two surfaces of the
slab remains for the vanishing wave vectors when
the wavelength of the phonon is comparable to the
thickness of the slab [15]. On the other hand, the
local frequency spectra of surface atoms can also be
obtained by the method based on continued frac-
tions — the recursion method [17] — in which this
problem of hybridization does not arise. The re-
cursion method was successfully used to study the
vibration of surface atoms in metals [13, 18–22] and
in silicon nanostructures [23]. In this case, spectra
are determined by local environment of a particu-
lar atom where the choice of a big cluster is not
absolutely necessary [18]. In fact, the calculation of
normal mode frequencies of the chosen cluster of
atoms is avoided in this method. The local density
of states (LDS) of an atom is directly calculated

as a continued fraction in which the dominant ef-
fect is that of the self-interaction and interactions
with the neighboring first shell of atoms. The ef-
fect of next shells of atoms is relatively smaller
and smaller. Thus, the difficulty with summing
over long wavelength phonons in the calculation of
surface contribution to lattice specific heat within
the slab method is conveniently avoided with LDS
calculated with the help of the recursion method.
The calculated result for lattice specific heat shows
the proper behaviour as shown by a calculation
based on elasticity theory, as well as lattice dynam-
ical calculations of a slab-shaped crystal [1, 2, 6–8].

In Sect. 2, we present theory to calculate surface
contribution to thermodynamic properties of solids
using LDS. In Sect. 3, we calculate surface contribu-
tion to lattice specific heat of tungsten using calcu-
lated LDS of atoms in the first three layers of (100)
surface as an illustrative example.

2. Theory

In the harmonic approximation, the thermody-
namic quantities are represented by additive func-
tions of the normal mode frequencies and, as a re-
sult, they can be expressed as averages over the fre-
quency spectrum

X (T ) =
∑
k

x (ωk, T ) =

∫
dωx (ω, T )Z (ω) , (2)

where x (ωk, T ) is the contribution to the thermo-
dynamic function at temperature T due to a single
oscillator of frequency ωk and Z(ω) is the frequency
spectrum of the crystal. The surface contribution
to any thermodynamic property of a finite crystal
is given by

∆X (T ) =

∞∫
0

dωx (ω, T )
(
Z (ω)− Z0 (ω)

)
, (3)

where Z (ω) and Z0 (ω) are the frequency spec-
tra of a finite crystal and the perfect crystal with
the cyclic boundary condition, respectively. To
evaluate ∆X(T ), one can take a sufficiently thick
slab and find out its frequencies and then the fre-
quencies of a perfect crystal and then generate the
frequency spectra Z (ω) and Z0 (ω). In view of
the limitations of the slab method, as discussed
earlier, we follow an alternative method based on
a local representation of the frequency spectrum.
The local frequency spectrum or LDS can be ex-
pressed in terms of the Green function of the lattice
(see Sect. 2.1).

The LDS approach has been widely used to study
the vibrations of defects in metals [24–27] and in
ionic crystals [28, 29]. This approach is found to
be extremely useful for evaluating the formation
entropy of vacancies [30, 31]. As far as the sur-
face properties are concerned, Treglia and Deszon-
queres [20] have discussed thermodynamical prop-
erties for low index surfaces in fcc metals. Using
the recursion method, Tang and Aluru [23] have
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presented results for thermodynamical properties
for different atom positions in a silicon nanowire.
In an interesting development, Iskandar et al. [32]
have used measured heat capacities of bare surface-
structured silicon nanostructures to derive a phonon
spectrum showing a significant modification in the
bulk phonon spectrum. It is considered to be exper-
imental evidence for changes in the phonon spec-
trum. This result is corroborated by numerous cal-
culations already cited [13, 18–23].

2.1. Green’s function and density of states

The standard Green function theory for isolated
point defects is well developed [4, 10, 24]. As indi-
cated earlier, the formal structure of the theory for
point defects and surface atoms is the same as far
as LDS is concerned.

For a monoatomic lattice in the harmonic approx-
imation, the equation of motion of an atom in the
direction α at site l is given by

Mlüα(l, t) +
∑
l′β

Φαβ (l, l′)uβ (l′, t) = 0, (4)

where Ml is the mass and uα (l, t) is the displace-
ment of the atom. The Φαβ (l, l′) is the αβ element
of the force constants between atoms l and l′. In
terms of a dynamical matrix

Dαβ (l, l′) =
1√
M l

Φαβ (l, l′)
1√
Ml′

, (5)

the equation of motion (4) becomes∑
l′β

√
Ml

(
Dαβ (ll′)− ω2δαβδll′

)√
Ml′ uβ (l′) = 0

(6)
or in the matrix form

L
(
ω2
)
u = M1/2

(
D − ω2I

)
M1/2u = 0. (7)

The Green function is defined as the inverse of
the matrix L

(
ω2
)
:

G (ω) =
[
L
(
ω2
)]−1 (8)

or

Gαβ (l, l′) =

√
1

MlMl′

∑
s

U∗α (l, s)Uβ (l′, s)

ω2
s − (ω + iε)

2 , (9)

where Uα (l, s) is the element of a unitary matrix
that diagonalises the dynamical matrix D. The in-
finitesimal positive quantity ε in (9) indicates that
the retarded Green functions are used. The eigen-
vectors U (s) satisfy the usual orthogonality and
closure relations. In the case of the ideal lattice,
the eigenvectors U (s) can be chosen to be plane
waves since force constants Φ (l, l′) have a transla-
tional symmetry and all masses are equal. Thus

Uα (l,kσ) =

√
1

N
eα(k, σ) exp

(
ik ·R (l)

)
, (10)

where k is the wave vector, σ is the polarization
index, eα (k, σ) is the eigenvector of the dynamical
matrix belonging to normal mode (k, σ) and N is
the number of atoms in the lattice. Thus, the ideal
lattice Green function is given by

G0
αβ (l, l′, ω) =

1

M0N

∑
kσ

e∗α(k, σ)eβ(k, σ)

ω2
kσ − (ω + iε)

2

× exp
(

ik ·
(
R (l)−R(l′)

))
, (11)

where ωkσ are the eigenfrequencies. In the ideal lat-
tice, Φ is real and symmetric and therefore the po-
larization vectors can be chosen as real so that
U∗(k) = U (−k) and ωkσ = ω−kσ. The exponential
in (11) can be replaced by cos (k ·R (l − l′)) and

G0
αβ (l, l′, ω) = G0

αβ

(
|l − l′|, ω

)
=

G0
βα

(
|l − l′|, ω

)
. (12)

Using the identity (x− iε)−1 = P/x+ iπδ(x), the
real and imaginary parts of the Green function are

Re
(
Gαβ (l, l′)

)
= Re

(
Gαβ (l, l′,−ω)

)
=

1

M0N

∑
kσ

P
eα (k, σ) eβ (k, σ)

ω2
kσ − ω2

× exp
(

ik ·
(
R(l)−R(l′)

))
, (13)

Im
(
G0
αβ (l, l′, ω)

)
= −Im

(
G0
αβ (l, l′,−ω)

)
=

sgn (ω)

M0N

∑
kσ

eα (k, σ) eβ (k, σ) δ
(
ω2
kσ − ω2

)
× exp

(
ik ·

(
R(l)−R(l′)

))
. (14)

Now, let us consider the same site ideal lattice
Green function

G0
αα (l, l, ω) =

1

M0N

∑
kσ

eα (k, σ) eα (k, σ)

ω2
kσ − (ω + iε)

2 .

(15)
Using the orthonormality condition for eigenvectors
eα (k, σ), where ω > 0, one obtains

Im

(∑
α

G0
αα (l, l, ω)

)
=

π sgn(ω)

M0N

∑
kσ

δ
(
ω2
kσ − ω2

)
=

π

M0N

∑
kσ

δ (ωkσ − ω)

2ω
. (16)

Further, when summing over all the lattice sites,
one gets

Im

(∑
l,α

G0
αα (l, l, ω)

)
=

π

2ωM0

∑
kσ

δ (ωkσ − ω) =
π

2ωM0
Z0 (ω). (17)

Here, Z0 (ω) =
∑

kσ δ (ωkσ − ω) is the total den-
sity of states in the ideal lattice, i.e., the number of
frequencies in the interval (ω, ω + dω). From (17),
it is clear that the total density of states can be ex-
pressed as the sum of imaginary parts of the same
site Green function over all the sites. Taking the
obvious suggestion from this expression, we define
LDS for ω > 0 in a non-ideal lattice by
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Zα (l, ω) =
2ωMl

π
Im (Gαα (l, l, ω)) =∑

s

|Uα (l, s)|2 δ (ωs − ω) . (18)

We note that Zα (l, ω) is the quantitative measure
of the number of modes contributing to the vibra-
tional behaviour of atom l. In the case of surfaces,
Zα (l, ω) will in general be different for each atom
and each direction in the surface region. The total
density of states of the lattice can be expressed as
the sum of LDS of all the atoms in the lattice

Z (ω) =
∑
l,α

Zα (l, ω) =

2ω

π
Im

(∑
l,α

MlGαα (l, l, ω)

)
. (19)

In the non-ideal lattice containing point defects,
surfaces or any other imperfections, the Green func-
tion can be expressed in terms of the ideal lat-
tice Green function G0 and perturbation caused by
the presence of the imperfections. The Green func-
tion of the defect lattice is given by(

Φ −Mω2
)
G (ω) = 1, (20)

while that of the ideal lattice is(
Φ0 −M0ω2

)
G0 (ω) = 1. (21)

Assuming one defect atom, we can express (20) as(
Φ0 −M0ω2 + V (ω)

)
G (ω) = 1 (22)

or equivalently
G (ω) = G0 (ω)−G0 (ω)V (ω)G (ω) . (23)

In (21)–(23) the following expressions apply:

G (ω) =
(
Φ −M0ω2

)−1 (24)
and

V (ω) = ∆Φ −∆Mω2 =

Φ − Φ0 −
(
M −M0

)
ω2. (25)

The direct solution of (23) is

G (ω) =
1

1 +G0V
G0 = G0 1

1 + V G0
. (26)

In order to obtain an equivalent expression for
G(ω), one should insert (26) into the r.h.s. of (23).
Then

G (ω) = G0 (ω)−G0 (ω) t (ω)G0 (ω) (27)
with t (ω) = V/(1 + G0V ). Note that the Green
function is given in terms of the ideal lattice Green
function and the tmatrix. The latter is restricted to
the defect space consisting of the defect and its im-
mediate neighbours. This calculation of the defect
Green function is especially suitable for vibrations
of point defects and surface atoms. However, in
view of difficulties with slab calculations, we used
an alternative calculation of LDS.

2.2. Thermodynamic properties

Importantly, (19) provides local representation of
the frequency spectrum. This local representation
of the spectrum is particularly useful in such situ-
ations where the vibrational behaviour of a limited

number of atoms is different from all other atoms
in the system. For example, in a defective lattice,
the vibrational behaviour of the defect and a few
of its neighbours is different from that of the rest
of the host atoms. In the present case, the vibra-
tions of atoms in a few top layers on the surface
are different from those of all the atoms in the inte-
rior. The use of crystal symmetry further reduces
the number of atoms whose local frequency spectra
must be known.

Using the local representation of the frequency
spectrum, the change in the thermodynamic prop-
erty is

∆X (T ) =
∑
l,α

∞∫
0

dωx (ω, T )

×
(
Zα (l, ω)− Z0

α (l, ω)
)
, (28)

where Zα (l, ω) is the local frequency spectrum of
atom l in the α-direction in the crystal with surface
while Z0

α (l, ω) = Z0 (ω) is the local frequency spec-
trum of atom l in the infinite crystal which is the
same as the frequency spectrum of the ideal crys-
tal. For an atom in the interior of both finite and
infinite crystals (or the crystal with surface and the
one with the cyclic boundary condition), the local
spectrum is identical and therefore the surface con-
tribution reduces to

∆X (T ) =
∑
lsα

∞∫
0

dωx (ω, T )

×
(
Zα (ls, ω)− Z0

α (ls, ω)
)
, (29)

where ls is confined to the few surface layers
only within the range of interatomic interactions.
Within this range, the force constants are presumed
to be altered due to the presence of the surface.
In the case of a cubic metal, the local frequency
spectra of all the atoms confined to a particular sur-
face layer and symmetrically placed around a given
surface atom are identical. Therefore, in the ac-
tual calculation, the number of atoms whose lo-
cal frequency spectrum must be known is equal
to the number of surface layers contained within
the range of interatomic interactions. Within this
range, vibrations of an atom are different from those
of atoms in the interior of the crystal.

3. Model application

As an illustrative example, we calculate the sur-
face contribution to low temperature lattice specific
heat of tungsten due to (100) surface using LDS of
atoms in the first three layers of the (100) surface.
In the case of the surface contribution to lattice,
the specific heat of crystals (29) transforms to

∆CSV = kB
∑
lsα

∞∫
0

dω

(
}ω

2kBT

)2

cosech2

(
}ω

2kBT

)

×
(
Zα(ls, ω)− Z0

α(ls, ω)
)
. (30)
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Fig. 1. Surface contribution to lattice specific heat
of tungsten due to (100) surface.

In the numerical evaluation of specific heat, we have
used the calculated LDS of atoms in the first three
layers of the (100) surface of tungsten by Black
et al. [18] who have obtained them using the recur-
sion method. The calculated surface contribution
to the lattice specific heat is plotted in Fig. 1.

We see that the surface contribution to the spe-
cific heat vanishes at 0 K as it must, since lat-
tice specific heat for both the crystal with a sur-
face and a perfect crystal vanish in the limit T → 0.
As the temperature increases, there is a parabolic
increase in ∆CSV reaching a maximum and then
starting to decrease, tending to zero at high tem-
peratures. The vanishing of ∆CSV at high tempera-
tures reflects the fact that in this limit each mode
contributes equal amount kB to specific heat so that
both CV and C0

V approach 3NkB. This behaviour
of ∆CSV is in agreement with the lattice dynamical
calculations based on a slab-shaped crystal [6–8].

In the limit of low temperatures, the surface spe-
cific heat has the form (see also (1)):

∆CSV = BST 2, (31)
where S is the surface area and B is a constant. Us-
ing the temperature dependence of ∆CSV below 35 K
(see Fig. 1), we find B = 2× 10−5 erg/(cm2 K3).
Since, to our knowledge, there are no experimen-
tal measurements of the surface contribution to
lattice specific heat of tungsten, we may com-
pare the obtained value of B with that for an
isotropic elastic solid. Using (1) in conjunction
with elastic constants of tungsten [33], the co-
efficient B for an isotropic solid is found to be
2.62× 10−5 erg/(cm2 K3). We note that the agree-
ment is reasonable.

4. Conclusion

The present approach based on LDS of sur-
face atoms provides an elegant yet straightforward
method to calculate the surface contribution to the
thermodynamic properties of solids.
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