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Addressing the open, complex, dynamic and adaptive nature of cancer biology, mathematical formalism
that works well at a tumor level is required. Our main goal in this study is to propose such simple
mathematical formalism. We try to simplify the model as much as possible, however to such extent
as not to leave out the crucial features of the molecular biology or cell physiology. Depending on
the variation of the analyzed real data, the tumor physically based formalism allows for insights at
the molecular level and for making robust reliable predictions about how a tumor responds to a variety
of natural situations and interventions. In this study, by adopting a hypothetical cylindrical tumor
shape surrounded in a hypothetical cylindrical-like peripheral tissue, a set of physically based ordinary
differential equations (ODEs) was developed to assess the internal pressure of the tumor in the course
of a two-dimensional external pressure. The calculation was analytically performed and applied on
real data. It turned out that under constant external pressure exerted on a tumor wall, the internal
fluid tumor pressure decreased over time. This study, although purely mathematical and abstract in
nature, may help further studies on environmental pressures which aim at either deterring or alleviating
tumor growth. Researchers should intensify efforts aimed at finding a tissue-specific physically based
mathematical model to discover the underlying processes governing cancer formation and development.
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1. Introduction

Decades ago we have witnessed progress in cancer
research due to theoretical and experimental contri-
butions from different fields of science [1–10]. Can-
cer cells arise from abnormal cellular growth [10].
These cells may be either benign — when localized
in a certain place — or malign and metastatic, when
they invasively spread inside the body through
blood or lymphatic vessels. Such a theory is de-
rived from observations of chromosomal abnormal-
ities in cancer made in the early 20th century by
Bover 1903 [11]. As seen in Fig. 1, cancer cells are
organized hierarchically and at the top of this hi-
erarchy, the cancer stem cells (CSCs) occur [12].
Therefore, the CSC hypothesis is the base for ex-
plaining tumor formation.

As mentioned above, malignant tumors can
spread through the body using blood or the lym-
phatic system. This process is called metastasis
and considered a multistep process [13]. During
metastasis, tumors must overcome several obsta-
cles when they move through the tissue. For exam-
ple, they form different shapes and mechanical stiff-
ness, and they resist shear and compression stresses

Fig. 1. (a) The stochastic model states that cancer
cells are heterogeneous but all of them are tumori-
genic. (b) According to the CSC hypothesis, only
a subset of cells is tumorigenic. CSCs can divide
symmetrically, giving rise to two CSCs or asym-
metrically, giving rise to one CSC and one more
differentiated cancer cell. Those cells are not tu-
morigenic and cannot produce CSCs [10].

from normal tissues that surround them. Their me-
chanical behavior under a small strain compression
can be modeled using poroelastic models [14–16].
It is known that shear and stresses exert pressure
on tumors in different ways. Armstrong [17] and
Berry et al. [18] have derived a full set of expres-
sions for strains and fluid pressure in uniform cylin-
drical samples compressed from the top. A major
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limitation in these models is the assumption that
the sample is uniform and the permeability outside
the uniform cylindrical sample is higher than that
inside the sample.

Apart from the limitation appearing due to the
sample uniformity, a major assumption in these
models is that the permeability outside the uni-
form cylindrical sample is higher than that inside
the sample. However, this is not always true for
the case of a tumor surrounded by normal tissue.
In many cases, vascular and interstitial permeability
of tumors is higher than that of normal tissue [19].
We use this observation to study fluid transport and
fluid pressure inside tumors.

Islam et al. [19] have obtained an analytical ex-
pression for displacement, strains and fluid pressure
of a cylindrical poroelastic inclusion embedded in
a cylindrical poroelastic background. In that model,
permeability inside tumors is higher than outside.
Baxter and Jain [9, 20, 21] have described stresses,
strains and fluid pressure behavior of a tumor with-
out considering the time. In cylindrical tumors,
three different stresses are exerted: an axial stress
that is parallel to the axis of cylindrical symmetry,
a circumferential stress that is in the tangential di-
rection and a radial stress that is perpendicular to
the axis.

In a muscle-based tissue, a tumor’s response to
stress contains an active component due to an acto-
myosin-driven contraction of the cytoskeleton. This
behavior can be described theoretically with mod-
els of active fluids and gels [22–26]. In the active
gel theory, the stress tensor obeys the viscoelastic
constitutive equation. This theory plays an impor-
tant role in explaining the mechanical behavior of
tumors. Many mathematical models have been de-
veloped to represent some aspects of cancers like
simulating the growth of a tumor volume [27–30].
Stress affects the fluid inside tumors and this in-
terstitial fluid inside tumors is an interesting phe-
nomenon in a biological process. It helps bring oxy-
gen and nutrients to cells and remove waste prod-
ucts from them. When we study the interaction
between the fluid flow and solid deformation within
a linear porous medium, we obtain poroelasticity.
The interstitial fluid pressure (IFP) is an important
parameter in tumor prognosis, tumor treatment,
drug delivery, tumor therapy and tumor metasta-
sis [31–36]. Experimental and theoretical papers re-
port that the IFP is uniform throughout the cen-
tral area of a tumor [1, 9, 37–39]. Zakariapour et
al. [40] have developed a numerical simulation of
the interstitial fluid flow and blood flow to a tis-
sue containing two-dimensional cylindrical tumors.
They have calculated the IFP, velocity and blood
pressure. Soltani and Chen [41] have developed
a mathematical model of the interstitial fluid flow
to the physiological system containing solid spheri-
cal tumors. Since the spherical shape of tumors has
already been studied, we intend to investigate the
cylindricalshape of tumors.

In this paper, we have studied the effect of an
axial and circumferential stress that is exerted on
cylindrical tumors. We calculated the mechanical
behavior of tumors, such as pressure versus time
and the effect of the Poisson ratio (EPR).

2. Theoretical background

There are many theoretical frameworks that can
be used when modeling cells. In general, a tu-
mor surrounded by normal tissue can be treated
as a poroelastic inclusion embedded inside a poro-
elastic background material with different proper-
ties [42–47]. Throughout this paper, a cylindrical
polar coordinate system is used for description.
The pressure exerted on an axial and circumferen-
tial axis and the inclusion are assumed to be typical
of the homogeneous poroelastic material.

The physics description of the mixture of a solid
and a fluid constituent is based on [48]:
∇(vs +wr) = 0 (1)

wr = −k∇p, (2)

−∇ +∇σe = 0. (3)
Here, vs is the solid matrix velocity, wr is the volu-
metric flux of fluid relative to the solid, p is the fluid
pressure, σe is the effective (or elastic) stress, and
k is the hydraulic permeability of the solid matrix.
The conservation of mass relation for the mixture is
given by (1). A consequence of the conservation of
momentum for the fluid constituent is expressed by
(2) and it reduces to Darcy’s law. In turn, (3) shows
the conservation of momentum for the mixture. For
a linear isotropic elastic solid matrix, we have
σe = λeTr (E) I + 2µsE, (4)

where E is the infinitesimal strain tensor and λs
and µs are the Lamé constants of the solid matrix.
The strain is related to the solid matrix displace-
ment u through E = (∇u +∇Tu)/2, whereas the
solid velocity is given by vs = ∂u

∂t , where
∂u
∂t rep-

resents the material derivative with respect to the
solid matrix.

The above equations from the mixture theory can
easily be reduced to the case of a membrane [48].
The fluid flux normal to a membrane of the unit
outward normal is given by

wn = w · n = −km(∇p) · n, (5)
where km is the membrane hydraulic permeability.
For a thin membrane of thickness hm, the pressure
gradient normal to the membrane is given by

−∇p · n ' ∆p

hm
, (6)

where ∆p = p(x) − p(x + hm) is the upstream-to-
downstream pressure difference and represents the
coordinate direction along n. Thus,

wn = Lp∆p, (7)
where Lp = km/hm is the membrane hydraulic
conductivity.
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2.1. Mathematical aspects of poroelastic material

Let us suppose that the inclusion i with a radius
is embedded in the background with radius b. This
can be described as follows

wr,b = −kb
∂pb
∂r

, (8)

where wr,b is the normal component of fluid flux
in the background region and kb is the background
permeability. The thickness of the poroelastic ma-
terial is h = b − a and a and b are radii of the
inclusion and background, respectively (see Fig. 2).
As the pressure acts on it, we can write

wr,b = −Lp∆pb, (9)
where Lp = kb

h .
Under unconfined compression, the governing

equations for the poroelastic sample inside the in-
clusion are as follow

1

r

∂

∂r

[
r

(
∂u

∂t
+ wr

)]
+

1

r

∂u

∂r
− ε̇θ = 0 (10)

wr,i = −ki
∂pi
∂r

, (11)

−∂p
∂r

+ λ

[
1

r

∂

∂r

(
r
∂ur
∂r

)
+

1

r2
∂2uθ
∂θ2

]

+
2µ

r

∂

∂r

(
r
∂ur
∂r

)
= 0. (12)

Integrating (10) with respect to r and making use
of the fact that there is no displacement along the
center line of the system, we obtain

wr,i = −2
∂ui
∂t

+
r

2
ε̇θ. (13)

Next, combining (11)–(13), a partial differential
equation for the radial displacement becomes

aLp(λ+ 2µ)

(
∂2ui
∂r2

+
1

r

∂ui
∂r

)

+
aLpλ

r2
∂2uθ
∂θ2

+
2aLp
ki

∂ui
∂t

+
aLp
2ki

rε̇θ = 0.

(14)
Here, we consider the case that permeability of

the inclusion is much higher than the permeability
of the background, aLp

ki
� 1 [48]. Thus, neglecting

the terms with aLp

ki
, we obtain

∂

∂r

(
∂u

∂r
+
u

r

)
= 0. (15)

2.2. Inside the inclusion calculation

When integrating (15) with respect to r, one gets
ui(t) = rεrr,i(t), (16)

where εrr,i(t) — the radial normal strain inside the
inclusion. Note that the function εrr,i(t) in this
solution is uniform. As a result, also the fluid pres-
sure inside the inclusion becomes independent of
the radius and constant with respect to the radius,

Fig. 2. A cylindrical sample of a poroelastic ma-
terial of radius b with a cylindrical inclusion of ra-
dius a. Axial direction is along the z direction, ra-
dial direction is along the r direction and the cir-
cumferential direction is along the θ angle.

i.e., pi(r, t) = pi(t). The fluid pressure can be ob-
tained from the elastic stress, so according to the
exerted circumferential stress one has

−p(a, t) + λ

(
∂ur
∂r

+ εθ

)
r=a

+2µ

(
∂ur
∂r

+
ur
r

)
r=a

= 0. (17)

As the zero fluid pressure condition applies at the
outer boundary and the continuity of the fluid pres-
sure at the interface between the inclusion and the
background (pi(a, t) = pb(a, t)), then

Lppb(a, t) = Lppi(a, t) = wr,i(a, t) = wr,b(a, t).

(18)
From (13) and (18), we deduce that

Lppi(a, t) =

(
−2

∂ur
∂t

+
r

2
ε̇θ(t)

)
r=a

(19)

and when one substitutes (17), it leads to
1

Lp

(
2a ε̇rr(t) +

a

2
ε̇θ(t)

)
+ (λ+ 2µ) εrr(t) + λεθ(t) = 0. (20)

Furthermore,
p(t) = (λ+ 2µ) εrr(t) + λεθ(t) (21)

because the fluid pressure does not depend on the
radial position, pi(t) = pi(a, t). All this results in

2aε̇rr(t) + Lp(λ+ 2µ)εrr(t)

+λLpεθ(t) +
a

2
ε̇θ(t) = 0. (22)

In the case of stress relaxation, it responds to
a strain step accordingly εθ,i(t) = −ε0H(t), where
ε0 is the magnitude strength and H(t) is the
Heaviside step function. Therefore, (22) reduces to
the form

2a ε̇rr(t) + Lp(λ+ 2µ)εrr(t) + λLpε0 = 0

(23)
with solution

εrr(t) =
λLpε0 + exp

(
Lp(λ+2µ)

2r t
)

Lp(λ+ 2µ)
. (24)
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The equation for the EPR inside the inclusion is
given as

Ωi(t) =
εrr,i(t)

ε0
=
λLpε0 + exp

(
−Lp(λ+2µ)

2r t
)

Lpε0(λ+ 2µ)
,

(25)
for the fluid pressure as

pi(r, t) =
λLpε0 + exp

(
−Lp(λ+2µ)

2r t
)

Lp
+ λ, (26)

and for the radial displacement inside the inclusion
(deduced from (16)) as

ui(r, t) =
λLpε0 + exp

(
Lp(λ+2µ)

2r t
)

Lp(λ+ 2µ)
r. (27)

2.3. Outside the inclusion calculation

The continuity equation of the pore fluid is a basic
poroelastic equation for cylindrical symmetry which
reads as [49]

∂εb
∂t

= kb

(
∂2pb
∂r2

+
1

r

∂pb
∂r

)
. (28)

To express the equation of equilibrium in terms of
volumetric strain, we use the volumetric strain that
is related to the radial displacement. Hence

εb =
∂u

∂r
+
u

r
+ εθ =

1

r

∂(ru)

∂r
. (29)

and (28) takes the following form [49]
∂σrr
∂r

+
σrr − σθ,θ

r
= 0, (30)

where σrr and σθ,θ are stresses in radial and circum-
ferential (tangential) directions, respectively. These
stresses can be separated into the elastic stresses
and the fluid pressure

σrr = σ
′

rr + p, σθ,θ = σ
′

θ,θ + p, (31)

while the general character of the equilibrium equa-
tion remains unchanged, i.e.,

∂σ
′

rr

∂r
+
σrr′ − σ

′

θ,θ

r
= 0 (32)

Now, we will use (29) and the stress-strain depen-
dence to obtain

σ
′

rr = −
(
K − 2

3
G

)
εb − 2G

∂u

∂r
(33)

σ
′

θ,θ = −
(
K − 2

3
G

)
εb − 2G

u

r
(34)

with the help of which a simpler version of the equa-
tion of equilibrium will be available, namely(

K +
4

3
G

)
∂εb
∂r

=
∂pb
∂r

. (35)

Here, K is the bulk modulus and G is the shear
modulus of the porous medium.

Let us assume that HAb(t) = K + 4
3G and in-

tegrate (35) with respect to r. As a result,
εb = p

HAb
+Qb and Qb is the integrating constant.

When substituting the resulted function into (28),
we obtain

∂2pb
∂2r

+
1

r

∂pb
∂r

=
1

cb

pb
t

+
1

cb

∂Qb
∂t

, (36)

where cb = HAbkb is the gel diffusion [50].
For an applied strain step magnitude ε0 along the

negative tangential direction, the boundary condi-
tion of the fluid pressure outside the inclusion is
pb(r, t) = pi(t) at r = a, and pb(r, t) = 0 at r = b.
The initial condition for this pressure at t = 0 is
pb(r, t) = µbε0.

We now divide our solution in two distinct parts.
In the first case, (36) is considered for the initial
condition when the zero fluid pressure at the inter-
face of the inclusion and background occurs. Then,
the solution at r = a and r = b becomes [50]

pb,1 = µbε0π

∞∑
n=1

J0(βna)U(βnr)

J0(βna) + J0(βnb)
e−β

2
ncbt (37)

where U(βnr) = J0(βnr)Y0(βnb)− Y0(βnr)J0(βnb)
and βn’s are the roots of the function C1(x) =
J0(xa)Y0(xb)− Y0(xa)J0(xb) = 0.

In the second case, (36) is solved for the bound-
ary condition at the interface imposed by the fluid
pressure inside the inclusion, pb(a, t) = pi(a, t).
The solution to the second part of the problem can
be written as follows [51]

pb,2 = −µiε0π
∞∑
n=1

J0(βna)J0(βnb)

J2
0 (βna)− J2

0 (βnb)

× e−t/τεi − eβ
2
ncbt

β2
n − 1/(τεicb)

β2
nU(βnr) (38)

The total pressure can be written as

pb(r, t) = −µi ε0π
∞∑
n=1

J0(βna)J0(βnb)

J2
0 (βna)− J2

0 (βnb)

× e−t/τεi − eβ
2
ncbt

β2
n − 1/(τεicb)

β2
nU0(βnr)

+µbε0 π

∞∑
n=1

J0(βna)U(βnr)

J0(βna) + J0(βnb)
e−β

2
ncbt. (39)

By considering the stress at a < r < b equal to
zero, we can write

pb(r, t) = λb

(
∂ub
∂r
− ε0

)
+ 2µ

(
∂ub
∂r

+
ub
r

)
.

(40)
Taking the general displacement as

ub(r, t) = r εrr,b(r, t), (41)
just as the same derivation that was done for the
radial strain inside the inclusion, the radial strain
in the background region is given by

εrr,b(r, t) =
pb(r, t) + λbε0
λb + 4µb

. (42)

We can express the EPR equation for the back-
ground region as follows

Ωb(t) =
εrr,b(t)

ε0
=
pb(r, t) + λbε0
εb(λb + 4µb)

. (43)
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3. Results and discussion

In this section, using a proposed model, we car-
ried out our calculations to measure the EPR pa-
rameters and pressure values of the three samples
obtained from Tauhidal [19]. To get an instanta-
neous response of the pressure and EPR parameter
inside and outside the tumors, we used the relations
in (25), (26), (39) and (43). We exerted strain in
such a way that instantaneous values of radial and
circumferential stresses inside the samples were con-
sidered. However, the effective stress on the solid
phase of the poroelestic samples is not zero which
initiates the recoiling of the solid phase. There-
fore, as the solid matrix was completely fixed, the
EPR of materials became the drained Poisson ratio
which can be deduced by considering t→∞ in (25)
and (43). According to (26) and (39), the fluid
pressure becomes zero if we let t → ∞. Based
on these observations, we can conclude that at
t = 0+, the solid matrix in both the inclusion and
background behaves like an incompressible solid.
Figure 3 shows the EPR versus time for the three
samples. The EPR (in) and EPR (out) correspond
to the inside and the background of the solution,
respectively. Figure 3 demonstrates that the curves
start from different values at t = 0 for the inside
and the background. Also, the EPR for all the
samples is reduced with increasing the time until it
reaches a fixed value (the drained Poisson’s ratio).
The drained Poisson’s ratio depends on the mate-
rial properties of the sample. The change of the
EPR with time for all the studied samples shows
that the considered tumors are not incompressible
materials. The reason for the difference between the
EPR at t = 0 is the difference between permeability
of the inclusion and the background.

In each curve, the permeability of the inclusion
and the background is different as the inclusion in
sample A has 1000 times higher interstitial perme-
ability than the background, the inclusion in sam-
ple B has 50 times higher interstitial permeability
than the background and the inclusion in sample C
has 20 times higher interstitial permeability than
the background.

Figure 4 shows the fluid pressure versus time for
all the samples inside and the background of the
solution from the analytical model. Here, we have
compared the fluid pressure from the inside and the
outside of the inclusion. The curves’ behavior shows
that the fluid pressure of the inclusion and the back-
ground has the same manner with time. The inside
and outside pressures are reduced with passing time
for all the samples. Also, we observe that the fluid
pressure goes to zero at steady-state for all the sam-
ples. The pressure of the inside is higher than the
outside pressure at t = 0 because the permeability
of the inside is higher than the outside.

Furthermore, in Fig. 5, we show the pressure as
a function of time for different radii of the cylin-
der. It can also be observed that the pressure

Fig. 3. EPR versus time for three samples.

Fig. 4. Fluid pressure versus time for all samples
inside and the background of solution from the an-
alytical model.

in the inclusion decreases with increasing the time
for different radii because the system approaches
to the steady state. Also, at a fixed time, the
pressure increases with the radius because the per-
meability of the inclusion is higher than that of
the background. For a higher radius, the pressure
tends to zero.

This model could become a useful tool for ex-
tracting the material properties of tumors and sur-
rounding tissues and can be applied for axial and
lateral strains estimated from the pre- and post-
compression radio frequency data to obtain clini-
cally important parameters such as the Poisson ra-
tio, the product of interstitial permeability and ag-
gregate modulus of the tumor and normal tissues
and other relevant mechanical parameters [18].
In this work, we cannot use only the simulation
methods because of the large number of parameters
involved in the model and because of the effect of
boundary conditions on the displacement and strain
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Fig. 5. Pressure versus time for different cylindri-
cal samples with different radiuses.

data. According to the time-pressure diagrams, the
pressure on the inner walls is first calculated which
drops to zero after a period of time. This may indi-
cate that after the lapse of time t, the walls of the
tumor have ruptured and there are no more walls
that force fluid into the tumor. Thus, as the tumor
wall ruptures, the fluid exits and is transported to
other parts of the body through blood or lymphatic
vessels. This factor may be the onset of metastasis
based upon our assumptions in this study.

4. Conclusion

We have analytically investigated the displace-
ment, strains and fluid pressure for the cylindri-
cal poroelastic inclusion embedded in the cylin-
drical poroelastic background using the theoretical
model. This model helps to better understand the
mechanical behavior of tumors. We have studied
the radial and lateral strain exerted on tumors and
showed that the metastasis-like phenomenon could
be triggered at a special time. Also, we have de-
rived models focusing on ultrasound poroelastogra-
phy application. Residing in a complex microenvi-
ronments, tumor cells are exposed and subjected
to a wide variety of physical and chemical stim-
uli. This would influence cell behavior to either
progress or inhibit the tumor. It is our respon-
sibility — as pure mathematical and biophysics-
minded modelers — to create physiological models
that enable accurate understanding of the multi-
dimensional structure, organization and complex
relationships in diverse tumor microenvironments.
This sort of models can greatly expedite clinical dis-
covery by closely replicating the physiological condi-
tions while maintaining high tunability and control
of the extrinsic factors. In this study, we tried to
come up with new models that target key aspects
of the tumor surrounding tissues and their role in
cancer progression.
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