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Induction and proliferation of cancer cells are complex processes whose ab initio mathematical descrip-
tion is virtually impossible. Nevertheless, some integral characteristics such as the Gompertz law, which
is generally used to describe cancer development, can result from a simple mathematical consideration
of biophysical processes. The simplified response to a single-source lesion created in a cell’s DNA con-
sists in the repair of the lesion or induction of a mutation which can lead to neoplastic transformation.
This approach makes it possible to propose a single mathematical formula connecting the Gompertz
curve with the simplified biophysical characteristics of tumor growth. Such an approach, which merges
the process of neoplastic transformation with cancer development, is shown in the present paper based
on the relatively simple analytical and Monte-Carlo models. The models operate with a small number
of biophysical parameters and account, at least in part, for the mechanisms that operate in an organism
exposed to low doses of ionizing radiation.
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1. Introduction

Historically, the phenomenological relationship of
the cancer cells’ dynamics is usually described by
the Gompertz curve [1] which displays the non-
symmetrical sigmoidal growth. This function starts
gradually, then, after a short time, becomes quasi-
parabolic and is followed by a rapid growth.
The progression phase of a tumor exemplifies this
type of dynamic behavior. With time, the num-
ber of cancer cells (i.e., the volume of the tumor)
saturates very slowly to a limiting constant value.
This is commonly explained by the shortage of nu-
trients necessary to maintain the tumor growth.
All of this can be described exactly by the Gompertz
law — still not fully understood — which presents
the phenomenological approximation appearing to
be the most accurate. In fact, it can be derived from
the phenomenological differential equation, simi-
larly to many other possible functions exhibiting
a sigmoidal shape [2].

Since the first application of the Gompertz curve
to real experimental data [1], scientists all over
the world have created many models which tried

to explain it in the context of the carcinogenesis
process. First, the paper by Bozic et al. [3] should
be quoted. They maintained that the development
of tumors starts from a single driver mutation and
modeled the development of “passenger” mutations
in a tumor as a function of the driver mutations.
In contrast to that, Little and Hendry [4] intended
to separate two processes: the process when the mu-
tation and the development of cancer are the result
of a metabolic process and the process in which
the situation is changed by a specific mutagen, such
as ionizing radiation or cigarette smoking. Consid-
ering the two scenarios, at the end, the results were
dramatically different (depending on the parameter
used, the cancer risk could change even by 20 orders
of magnitude). The problem of what happens be-
fore the tumor starts forming was disscussed in [5]:
driver and passenger mutations are modeled.

From the practical application’s point of view,
Schneider [6] has created a mechanistic model of
the secondary carcinogenesis after fractionated ra-
diotherapy. Shuryak et al. [7] have merged and de-
veloped many existing models which were divided
into two groups: (i) long-term models “that track
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premalignant cell numbers throughout an entire
lifetime but treat initial radiation dose-response
simplistically”, and (ii) short-term models “that pro-
vide a detailed initial dose-response (. . . ) but ad-
dress its modulation during the subsequent cancer
latency period only indirectly” [7]. This approach
seems to be very deep and complex, and gener-
ally meets most of experimental findings. However,
the long-term tumor growth is not a trivial thing
which was additionally proved by Khordad and
Rastegar Sedehi [8] who modeled cancer dynamics
with the use of entropy and statistical mechanics —
both typically used in physics. Of course, one can
find much simpler modeling approaches which can
be useful for some general applications [9] or mech-
anistic models focused on nonlinear aspects of low
doses of ionizing radiation [10].

The present paper offers an analytical foundation
of the Gompertz law in the context of the process
of carcinogenesis that starts with the creation of
a DNA damage which, when unrepaired, may pro-
duce a fixed mutation and lead to a neoplastic trans-
formation of a cell. The simple analytical formula
describing the transition from the initiating event
to the clinically detectable tumor is presented and
discussed within its applicability. It turns out that
the Monte Carlo simulation also shows that many
different biophysical processes taken into account in
the simulation yield the Gompertzian relationship
of the kinetics of the created cancer cells.

Our paper proposes a model of cancer cell cre-
ation and growth different from many models widely
presented in the scientific literature (see above) and
shows that basic biophysical laws with some simpli-
fications are sufficient to explain the Gompertzian
shape of the cancer dynamics.

2. DNA damage in a single cell

Let us denote the probability density function
(PDF) of the creation of a DNA damage in a sin-
gle cell as PL. The exact form of PL represents
the way how a detrimental agent affects the DNA.
In the general case of many different and indepen-
dent agents, one can present this PDF as a sum of
separate processes

PL =

A∑
a=1

waPL,a

A∑
a=1

wa

, (1)

where A denotes the maximal possible number of
all different detrimental agents which can affect
the DNA and wa denotes the weight with which
a given agent participates in the whole process.
When no external agents are present, the DNA can
be affected by a chemical reaction with metabolic
reactive oxygen species (ROS, mostly radicals) as
well as by erroneous DNA replication. The PDF
of that process can be given by the equation of
the ROS diffusion, analogically to the transfer of

detrimental signals from the targeted to bystander
cells [11]. In the first approximation, it can be, how-
ever, treated as going with a constant rate.

In the case of external agents, their interaction
with the DNA can be twofold: a general homoge-
neous interaction (as in the case of chemical agents
or ROS generated by external agents) and a sin-
gle hit instantaneous interaction (as in the case of
a direct hit by ionizing radiation). In the former
case, one can assume a linear dependence related to
the homogeneous concentration (ρ) of the agent(s)
in a cell

PL, hom =

n∑
i=1

αiρi, (2)

where, in contrast to A, n denotes the number of
external agents only and αi denotes the appropriate
weights.

The concentration of ROS from radiolysis
(mainly O•−2 , •OH) and H2O2 depends on the linear
energy transfer (LET) and the dose of radiation as
well as on a cell type. The total number of oxida-
tive hits to the DNA is estimated to be about 109

per cell per day [12]. The spectrum of the radiation-
generated ROS is similar to that formed dur-
ing metabolic processes with one major difference:
the damage from metabolic ROS is randomly dis-
tributed in the DNA, while the radiation-induced
DNA damage frequently occurs in clusters [13].

In the case of direct hits, one can use the PDF
formula proposed by L. Dobrzyński et al. [14], ana-
logical to the target theory, for a special case of
the ionizing radiation interaction as

PL, hit = Cσ
(
1− e−aD

)
, (3)

where D denotes the radiation dose, C is the scal-
ing constant and σ is the physical macroscopic
cross-section of the radiation interaction with mat-
ter. We believe that the simplifications used so far
should provide a sufficient description of the reality.

3. Mutation induction

The creation of an oncogenic mutation results
from the unrepaired or improperly repaired alter-
ation of the nucleotide sequence of the coding part
of the DNA. Hence, such a mutation is strictly con-
nected with PL and PR, the latter denoting the PDF
of all possible repair mechanisms. The value of
PL(1− PR) represents the PDF of the DNA alter-
ation which was not repaired (or improperly re-
paired) only. This is, however, not sufficient for
the induction of an oncogenic mutation. One needs
to introduce an additional term based on different
and independent mechanisms of the induction of
such a mutation in a single cell with a single un-
repaired alteration (lesion):

Pind =

∑
i

wiPind, i∑
i

wi
, (4)
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where wi denotes the weight of lesion from a given
i-th cause. The exemplary Pind, i function can be
found in the German model called the random co-
incidence model-radiation adapted (RCM-RA) [15].
Another example, but limited to radiation only,
can be deduced from the dual radiation action
model [16]. This specific case is limited to chro-
mosomal aberrations only which are the example of
the radiation-induced double-strand break’s onco-
genic mutations — the most frequently considered
in experimental radiobiology and cytogenetics. The
presented approach will continue this line of rea-
soning as the most mathematically described case
which is linear or linear-quadratic at low doses and
saturates at very high doses [17]:

Pind, rad = 1− exp

(
−
∑
R

∑
i=0

ai,RD
i
R

)
, (5)

where R represents the radiation type (i.e., high or
low LET) and ai,R’s are the experimentally derived
constants. For ionizing radiation only, D represents
the radiation dose. As a matter of fact, (5) can be
used as a more universal one and in this context D
can be replaced by any analyzed agent ξ. Now, let
us assume that Pind ≈ Pind, rad(ξ).

Finally, the PDF of the induced mutation can be
presented in the most general form as

PM = PLPind (1− PR) , (6)
where the PDFs are given by (3)–(5). It is also
possible to introduce any other form which will
be appropriate for a given type of a detrimental
agent [14, 17].

Additional comments should be made regarding
the repair of a DNA lesion PR. Such a repair can
be regarded as a natural PNR and/or adaptive re-
sponse PAR to a toxic agent. This approach was
described in [14] and its formalism will be used in
further considerations. One should remember, how-
ever, when considering the fate of a lesioned cell,
that a repair process may restore its healthy state
(described in detail in Sect. 6).

Let us stress that in our mathematical treat-
ment we avoid detailed, microscopic biological pro-
cesses and the description bears integral character-
istic only.

Figure 1 shows an exemplary shape of the PM
function related to the dose D of ionizing radiation.
The black solid curve corresponds to the situation
in which PR = PNR = const, while the gray curve
corresponds to PR = PNR + PAR(D) 6= const.
For PAR(D), the function identical to that em-
ployed in [14] was used. It can be observed that
within a certain range of doses the value of PM due
to a radiation-induced adaptive response (PAR > 0)
is lower than the value of PM without that effect.
When potent repair mechanisms are activated,
the so-called hormetic effect appears — a local
minimum in PM (D) function. When the repair
mechanisms are arbitrarily turned off (PAR = 0)
or the dose is too high, the relationship PM (D)

Fig. 1. Exemplary shapes of PM given by (6) re-
garding ionizing radiation as a detrimental agent,
including the probability of the repair processes
(PR = const for the black curve and PR 6= const
for the gray curve associated with the radiation-
induced adaptive response). Noticeably, the differ-
ence between both curves represents the beneficial
(hormetic) effect of irradiation.

merges with the black line. These findings are
consistent with those of [17], where the probability
of a fixed mutation is very similar to the one
given by (6). It was assumed, for simplicity, that
internal (metabolic) detrimental agents are absent
in Fig. 1 (hence, both curves in the figure start
from zero, PM (D = 0) ≈ 0). This does not happen
in reality where additional mutations can occur
(PM (D = 0) > 0). Consistently, when the repair
mechanisms eliminate both radiation- and non-
radiation-induced lesions, the curves in Fig. 1 may
assume a hormetic shape.

4. Neoplastic transformation

Within the framework of the presented model,
the probability of neoplastic (i.e., cancer) trans-
formation of the affected cell is strictly related to
the number of oncogenic mutations m accumulated
in the DNA. According to the current understand-
ing, the process of carcinogenesis (i.e., the creation
of a cancer) is regulated by two main groups of
the so-called driver genes. The first group consists
of proto-oncogenes which, upon a “gain-of-function”
mutation, behave as oncogenes and contribute to
the neoplastic transformation of a mutated cell.
Genes of the second group are called tumor suppres-
sor genes whose “loss-of-function” mutation creates
the danger of losing cells’ self-control [18]. Out of
the total number of about 30,000 genes in the hu-
man genome, π = 299 have been identified as
driver genes [19].

In this context, it is important to note that
the RCM-RA model of Fleck et al. [15], which
is based on Moolgavkar’s multistage theory [20],
describes the process of mutation accumulation in
relation to the probability of a single cell mu-
tation PM [14]. Thus, based on this model,
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the time-dependent generation of Mm cells with one
oncogenic mutation (M1) can be described as

dM1

dt
= (M0 −M1)BPM , (7)

where M0 denotes the number of non-mutated cells
and B represents the factor related to the num-
ber of cancer-critical genes. This factor, how-
ever, is time dependent and is related to the num-
ber of mutations B(t,m). Usually, when no addi-
tional cancerogenic hazards exist, B is measured in
years−1 regarding the entire human being [20]. Ad-
ditionally, the number of mutations is much smaller
than the number of oncogenes in non-neoplastically
transformed cell (m � π). Therefore, one can
assume that B is generally constant regardless of
the number of the existing mutations [14]. Sum-
ming up information presented about the number of
driver genes π with respect to the total number of
genes [19], one can estimate the coefficient B, which
describes the critical potentially carcinogenic region
in the DNA, to be not higher than 0.01 per year.

Note also that almost an identical differential
equation can be written for the dose dependence.
In such a case, the differentiation with respect to
time is substituted obviously by the differentia-
tion with respect to a dose and the value of BPM
has to be substituted by another constant. Then,
solution of (7) is

M1 = M0

(
1− e−BPM t

)
. (8)

Analogically, one can find the solution for the num-
ber of cells with m mutations in cancer-critical
genes before neoplastic transformation [14]:

Mm = M0

(
1− e−BPM t

)m
. (9)

Generally, the experimental data show that a cer-
tain number of the driver gene mutationsm ∈ [2, 8]
is required for a mutated cell to transform into
a cancerous one [21–24]. Moreover, the probabil-
ity of this transformation increases very rapidly
around maverage ≈ 5. This relationship can be pre-
sented phenomenologically as a sigmoidal curve.
The shape can be obtained also by the Avrami–
Mehl type of equation [14, 17] — originally de-
rived for the description of the kinetics of a phase
transition when a new phase is formed within
another one. Thus,

PA−M = 1− exp
(
−cmk

)
, (10)

where k is the critical index, which in the de-
scription of the kinetics of tumor growth is asso-
ciated with the dimensionality of this growth, and
c ≈ 0.0277 when k = 2 [14]. In the original Avrami’s
approach, one considers that the growth rate of
the new phase is an exponential function of time τ ,
proportional to τk. Therefore, taking full advantage
of this theory, it is tacitly assumed that the number
of mutations increases proportionally to the charac-
teristic time in which a cancer transformation takes
place. In other words, in such an approach one uses
two time scales: one for a formation of mutations
and another one for a transformation of a mutated
cell to the cancer cell [17].

5. Tumor growth

Assuming that m mutations are required for
a cancerous transformation of a cell, one can write
the formula for that transformation for allMm cells
(and the further growth of the whole tumor) as

PC(m) = Mm(t,m)PA−M (m), (11)
which can be presented in a complete form for
a given number of mutations as in [14]:

PC(m) = M0

(
1− e−cm

k
) (

1− e−BPM t
)m

(12)

and PM is assumed to be time-independent for fixed
values of input parameters. Therefore, (12) can be
used as a cancer cells generator.

In order to obtain the full probability of the de-
velopment of a cancer, one should sum up (12)
over all possible values of m. In other words:
PC, tot =

∑
m PC(m) [14] which is also consistent

with the multistage theory of carcinogenesis [20].
One can additionally use the time shift t→ (t− t0),
where t0 denotes the minimum time when cancer
cells may appear. The final form of the probability
function for the cancer cells growth with an initial
neoplastic transformation can be then presented as

PC, tot =

10∑
m=1

M0

(
1− e−cm

k
)

×
(

1− e−BPM (t−t0)
)m

, (13)

where some constant values c ≈ 0.0277 and
B ≤ 0.01 year−1 [14], while PM is defined by (6).
Some additional information needs to be presented
regarding the parameter k.

Figure 2 shows to what extent the final results
are dependent on the assumed values of the critical
index k. The slope of the curve may vary in the
two exemplary cases (k = 2 and k = 4), resulting

Fig. 2. Probability PC, tot of a neoplastic transfor-
mation vs. time assuming two values of the critical
index, k = 2 and 4, for comparison. The formula
(12) was summed over m from 1 to 10 [14] to simu-
late exemplary data point (filled and empty circles).
Solid curves are fits of the normalized Gompertz re-
lationships (14) presented as P1(t) (lower curve for
k = 2) and P2(t) (upper curve for k = 4).
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Fig. 3. The application of (13) to some exem-
plary experimental data: (a) time-related growth
of fibroblast cells, where M0 = 1.45, k = 2,
BPM = 0.113 and t0 = 3.5; original data taken
from Fig. 4 in [2]; (b) dose-related increase of liver
cancers among Danish patients exposed to thoro-
trast, where M0 = 15.43, k = 2, BPM = 0.408 and
D0 = 1.5; original data taken from [25].

in the pure Gompertz curve which well explains
the data. Such a situation can most likely be related
to the fact that the first term in (13), independent of
time, is nothing else than the weight of the last term
and it averages out after the summation. Hence,
the final shape of the curve is dependent mainly
on the last term in (13) which is time-dependent.
It follows from Fig. 2 that the pure Gompertz curve
can perfectly approximate the mechanistic formula
given by (13).

Therefore, (13) arises as a novel mechanistic
model of cancer growth which can be easily verified
on the real experimental data. A good example to
refer to is Fig. 4 in the paper by Marušić et al. [2],
where fibroblast cells (line V79) were growing spher-
ically according to the sigmoidal shape of their dy-
namics. The result of fitting the model given by (13)
is presented in Fig. 3a.

The proposed approach is much wider. When
the time is going towards the dose, namely t→ D
and t0 → D0, the character and applicability of
the curve remain the same (only the constant in
front of the dose changes). This is presented
in Fig. 3b where the modified (13) was fitted to
the liver cancer cases in Denmark [25]. One should
note that the data in Fig. 3b are by no means
belonging to a low-dose regime.

6. Tumor development
and the Gompertz law

Let us examine the last term on the r.h.s. of (12)
and analyze to what extent it may be identified with
the Gompertz curves presented in Fig. 2.

Let us recall the argument of the function
g(t) = (1− exp(−βt))m, where β ≡ BPM . As men-
tioned earlier, parameter B corresponds to the ra-
tio of the number of critical (i.e., carcinogenesis-
related) genes to the number of all genes, thus
B < 1 per year. Additionally, PM can be maximally
equal to 1, so the condition β = BPM < 1 per year
is always true. For practical purposes, the β value
in Fig. 2 was set to 0.1 [14] and it is equivalent in

the calculations to a decrease of the time unit by 10.
Consistently, βt in g(t) varies from zero to 10 for all
the values of m.

The Gompertz curve is typically described by:
f(t) = exp

(
−ae−βt

)
(14)

and differs from the one presented by (12), reduced
to the function g(t). However, when one looks at
differential equations fulfilled by both functions

df
dt = afβ exp(−βt),
dg
dt = gmβ exp(−βt)

[
1− exp(−βt)

]−1
,

(15)

it becomes clear that for βt � 1, when e−βt � 1,
both functions have the same underlying differential
equations. Furthermore, let us consider the limiting
relationships, i.e.,

f(t) =

{
e−ae

−βt ≈
(
1− e−βt

)a ∼= 1 for βt� 1,

(1 + aβt)e−a for βt� 1,

(16)
and

g (t) =

{ (
1− e−βt

)m ∼= 1, for βt� 1

(βt)
m
, for βt� 1

. (17)

As noted in (16) and (17), it is clear that
limt→∞ f (t) = limt→∞ g (t) = 1 which is equiva-
lent to the saturation of both sigmoidal curves at
very long times.

This is just another way to see that the biggest
difference between these two functions occurs
at low βt values. However, if βt is large, the func-
tion

(
1− e−βt

)a is identical to g(t) when a = m.
On the other hand, to get the full probability of de-
velopment of cancer, one has to sum up (13) overm.
Hence, from (17) one obtains

10∑
m=1

(βt)m ≈ 1

1− βt
− 1 ≈ βt for βt� 1. (18)

The main weakness of using the Gompertz func-
tion as f(t) is that it does not start from zero
at t = 0. This indicates that the development of
cancer in its very initial stage cannot be described
with the Gompertz curve mainly because — in its
original assumption — it starts from the non-zero
cancer volume [1]. At longer times, the problem dis-
appears which simply confirms that the results pre-
sented in Fig. 2 are well understood. In fact, solid
tumors are currently detectable clinically when they
are sufficiently large, i.e., a relatively long time after
the initiation phase of a carcinogenesis.

7. Monte Carlo simulations

A group of cells can be modeled using the mem-
ory Markov chain Monte Carlo (MMCMC) method
where practically all the important but simplified
biophysical mechanisms can be taken into consid-
eration in the form of a probability tree [26–28].
The simulations performed in this study took
into account the impact of ionizing radiation only
and disregarded other external detrimental agents.
With the MMCMC method, one can present
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Fig. 4. Exemplary results of the Monte Carlo sim-
ulation of the dynamics of the creation of cancer
cells which support the Gompertzian shape for: (a)
a full tree of probabilities, (b) a narrowed tree of
probabilities, (c) a strongly narrowed tree of prob-
abilities (the Gompertzian shape is of lesser use,
especially at the lowest times). Red dashed curves
correspond to the Gompertzian best fit, black solid
curves represent results of the simulation, while
gray curves represent the simulation uncertainty
(two standard deviations, SD; except (c) where un-
certainties were not significant). The constant irra-
diation (dose-rate) was implemented.

an additional proof that the Gompertz curve ap-
pears in a natural way when the basic biophysical
effects are taken into account.

The simulation was based on the assumption that
each cell remains in one of the four possible states

• healthy,
• damaged,
• mutated,
• cancerous.

Each state is represented by the proper probability
functions located on the broad tree of probabilities.
One has to note, however, that in this paper the ir-
radiation of cells is treated in a purely mechanistic
way and no specific microdosimetric Monte Carlo
calculations of DNA damages are carried out. Such
calculations can be found in [29, 30].

The simulations were carried out under the fol-
lowing conditions: the initial number of cells (clus-
ter size) was set at 9000; all of the cells are healthy;
the number of the Monte Carlo time steps has been
limited to 800. The parameters necessary for the de-
scription were estimated or taken ad hoc [28].

The overall simulation which takes into account
all (or most of) the biophysical mechanisms of irra-
diated cells shows that the number of cancer cells
appearing with time is well described by the Gom-
pertz relationship (see Fig. 4a). It also turns
out that the logarithm of the survival of cells is
described by the linear-quadratic relationship as

commonly accepted. The compatibility of the mod-
eled points with the Gompertz function is very high
(R2 = 0.999). A valid question is which branches
of the probability tree decide on this character.
Alternatively, one could find which of the branches
are irrelevant for arriving at the Gompertz-type
behavior.

All biological effects of our interest were described
in previous studies [26–28] and they will not be
repeated here. Admittedly, an analytical solution
which would include all the analyzed biological pro-
cesses is rather impossible. In particular, the anal-
ysis of the bystander effect requires 3D simulations
of the cell–cell interactions. Surprisingly, the shape
of the Gompertz function survives (Fig. 4b) when
the number of branches in the probability tree is
strongly reduced and calculations are uniquely lim-
ited to the following mechanisms:

• for a healthy cell — to the radiation-induced
lesion;

• for a lesioned cell — to the induction of a mu-
tation or an additional lesion after exposure
to radiation; alternatively, to the induction of
a spontaneous mutation not due to a radiation
hit;

• for a mutated cell — to its neoplastic trans-
formation after a radiation hit;

• for a cancer cell — to all the mechanisms in-
duced in an irradiated and non-irradiated can-
cer cell, namely: spontaneous death, multipli-
cation, bystander effect, death due to a precise
radiation hit, etc.

The result of the MMCMC simulation for this nar-
rowed tree is presented in Fig. 4b which is not much
different from the one shown in Fig. 4a. Indeed,
the Gompertz function fits here very well.

In the next step, a still narrower path for each
cell’s state was allowed. Namely:

• for a healthy cell — only the probabilities
of the radiation hit to the DNA (Phit) and
of the lesion induced by such a hit (PRL);
thus the probability of the creation of a le-
sion in a healthy cell is reduced to the product
pH→L = PhitPRL;

• for a lesioned cell — since a radiation hit to
the DNA (Phit) can produce a mutation with
probability PRM , one can rewrite the prob-
ability of the creation of the post-irradiation
mutation as pL→M = PhitPRM ;

• for a mutated cell — since after the mutation-
inducing DNA hit (Phit) the cell can un-
dergo neoplastic transformation (PRC), thus
pM→C = PhitPRC ;

• for a cancer cell — no action.

The probability functions presented above are listed
in analytical forms in Table I. An exemplary result
of the simulation carried out under the aforemen-
tioned conditions is shown in Fig. 4c which depicts
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TABLE I

Selected formulae of the probability functions used
in the Monte Carlo modeling (see also [26–28]).
Remarks: D — ionizing radiation single dose,
Phit 6= PRL, L — number of lesions in the cell’s DNA,
m — number of mutations, k — critical index

Description
of the process

Probability
function formula

DNA hit by radiationa Phit = 1− e−constD

DNA lesion creation
by a radiation hit

PRL = 1− e−constD

mutation creation
from the lesion(s)

PRM = 1− e−constL

cancer transformation
of the mutated cellb

PRC = 1− e−constmk

asee Appendix B in [14] for details of the formula
derivation;
bsee analogous (10) based on the Avrami–Mehl
equation [14, 17].

the closest situation to the one given by (13). No-
ticeably, the Gompertz curve fits quite compatible
with the simulated data — with a lower compati-
bility but still on an acceptable level (R2 = 0.995).
Additionally, the simulated curve covers a broader
range of times (see the time scale change in Fig. 4c).
A simple inspection of Fig. 4c reveals that, for this
case, the proposed tree seems to be oversimplified
to reflect the Gompertz shape well, especially at
low values of time. However, in contrast to the two
previously discussed cases, the latter case can be
easily presented also in the analytical way which is
an important advantage.

Obviously, the Monte Carlo approach presented
in this paper is a numerical simulation. However,
due to the narrowing of the original probability tree,
it is possible to describe the time growth of can-
cer cells analytically, using the probabilities listed
in Table I.

8. Analytical solutions
for the Monte Carlo simulations

Within the scope of this model, an increase in
the number of the lesioned cells with time can be
described as

L(t) = CH→L pH→L t =

CH→L
(
1− e−c1D

) (
1− e−c2D

)
t, (19)

where CH→L = const is a conversion factor needed
for the transformation of the probability value to
the number of cells.

Analogically, the number of the mutated cells can
be presented as

m(t) = CL→M pL→M =

CL→M
(
1− e−c1D

) (
1− e−c3L(t)

)
(20)

and the number of emerging cancer cells as
N(t) = CM→C pM→C =

CM→C
(
1− e−c1D

) (
1− e−c4m(t)k

)
. (21)

Inserting (19) into (20) and merging the result with
(21), one can arrive at the sigmoidal function (simi-
lar to the Armitage–Doll model [31]) for the increase
in the number of cancer cells with time

N (t) = C̃1

[
1− exp

(
−C̃2

(
1− e−C̃3t

)k)]
, (22)

assuming that the dose used in the calculations
is time-independent (which can be treated as
a dose-rate or a single radiation pulse) and, con-
sequently, all the dose-related functions are also
time-independent. As mentioned earlier, the nar-
rowed tree of probabilities, here represented analyt-
ically by (22), does not produce a perfectly Gom-
pertzian curve (Fig. 4c) but this shape serves as
quite a good approximation of the exact formula.
Moreover, its simplified form can be very useful
for further theoretical considerations, especially for
the analysis of different behaviors of cancer cells
(see the next section).

The simplified approach presented above may be
carried out both analytically or numerically. How-
ever, the analytical result obtained using (22) is
practically the same as in its Monte Carlo ana-
log in Fig. 4c. In the particular case described
in this section, both approaches can be treated as
equivalent.

9. Cancer cells interactions

As mentioned in the previous section, (22) was
derived assuming that no changes in the number of
the existing cancer cells are expected. Typically,
however, cancer cells multiply (with the constant
probability PCM ), naturally die off (constant prob-
ability PCND) or are killed by a potent radiation
hit or due to their inherent hyper-radiosensitivity
(time-independent probabilities PCRD1 and PCRD2,
respectively, given by the formulae analogous
to PRL, see Table I) [26–28]. The multiplication and
natural deaths of the cells can occur irrespectively of
irradiation, however, PCRD = PCRD1 + PCRD2 can
be taken into consideration prior to the radiation
hit only, so Pdeath = PhitPCRD.

Such a reasoning can be readily applied to the an-
alytical solution of the narrowed tree of probability
from the previous section. Using the analogous ap-
proach as in (19)–(21), one can calculate the cor-
rection factor

∆N(t) = t
(
PCM − PCND − C̃4PCRD

)
(23)

which should simply modify (22) to obtain its more
general formula for the cancer cells’ dynamics which
includes different cellular behaviors

Ñ = (1 + ∆N)N, (24)
where N is given by (22) and ∆N by (23). This
modification can influence the Gompertzian shape
if |∆N | is large enough.
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Fig. 5. Exemplary analytical calculations of
the total number of cancer cells vs. time corre-
sponding to different behaviors of cancer cells:
multiplication only (upper dashed line), death only
(lower dotted line) or no changes in the number of
already created cells (black middle line); this last
case is analogous to Fig. 4c. The calculations were
carried out using (24).

Many experimental data (e.g., [32]) usually
present the Gompertzian shape of N(t), so, in most
cases, ∆N ≈ 0. This means that (23) can be viewed
as a balance equation when multiplication (prolif-
eration) of the cells competes with their mortality.
However, in some cases tumor cells multiply very
rapidly (∆N > 0) which distorts the Gompertzian
shape. The most famous example are the immor-
tal HeLa cells which can multiply infinitely in cul-
ture. The opposite situation is when cancer cells
are injected into the body where, if the cells are
genetically incompatible with the host, they die off
pretty fast. In any case, all those behaviors can
be described by (24) with the Gompertz curve as
the most typical response (∆N ≈ 0), other solutions
also being possible (|∆N | > 0) (see Fig. 5). This
means that the Gompertz curve describes the most
typical case among the broad family of the cancer-
dynamics’ functions [8].

10. Discussion

Experimental examinations of the growth (pro-
liferation) of cancer cells have been available for
decades [1, 2, 32]. Examples of interesting mod-
eling of initiation and development of cancers can
also be found in many papers [3–5, 7, 10]. How-
ever, the dose-effect curve has rarely been discussed.
The Gompertz law, which is now a golden stan-
dard in medical physics and radiobiology, was ex-
amined in many ways, although no detailed analysis
of its relation to crucial physical processes of car-
cinogenesis has been demonstrated so far. Hence,
the present paper provides a simplified biophysi-
cal explanation of such an integral characteristics
of the growth of cancer cell like the Gompertz law
which was often found experimentally but has not
been satisfactorily explained so far.

Apparently, the Gompertz behaviour does not
seem to arise from the particular shape of the PM
function (Fig. 1). In fact, such a shape may follow
from the exact number of mutations (in the func-
tion of time) but how these mutations were cre-
ated is less important during the final stage of
neoplastic transformation (Fig. 2). When PM is
given by a different function (related to some other
detrimental agents), the final Gompertzian shape
of (12) and (22) remains but some geometrical shifts
along the x-axis can be observed due to the differ-
ences in the complexity of the creation of oncogenic
mutations.

It is important to note that the analytical origin
of the Gompertz law was supported by the Monte
Carlo simulation (Fig. 4a) which operates on prob-
abilities of different simplified biological effects.
Indeed, such a simulation appears to be very use-
ful because the user can cut out or add partic-
ular branches to the probability tree (Fig. 4b).
As a result, the pure path to the Gompertz shape
can be analyzed separately which was presented
in Fig. 4c with an additional analytical description
for this case.

Figure 4c was created under the assumption that
cancer cells are passive after their creation. Thus,
the tumor growth presented in Fig. 4c is associ-
ated with the appearance of new cancer cells due to
the neoplastic transformation of the mutated cells
only. However, when additional probabilities asso-
ciated with the existing cancer cells (e.g., rates of
their proliferation, death, etc.) are implemented,
the Gompertzian shape can be modified — the con-
stant saturation for a long period of time (Fig. 4)
can be replaced by a tendency to approach zero or
infinity, as presented in Fig. 5. This suggests that
the Gompertz curve is just a special case of a much
wider family of the time-response curves describing
the dynamics of cancer cells.

Our most important general finding is that
the Gompertzian shape of the cancer cells’ dy-
namics was obtained independently by two dif-
ferent approaches, namely analytical calculations
of the purely mathematical transition from a sin-
gle DNA lesion to a neoplastic transformation and
the analogous Monte Carlo simulation. Eventually,
these two different analyses yielded the same out-
come. Hence, we can conclude that: (i) the cal-
culations are, in general, correct, (ii) the general
way of thinking about the biophysics of the de-
velopment of cancer is correct, and (iii) the Gom-
pertz curve naturally follows from the cancer cells’
standard behavior at longer times. One has to re-
mark, however, that the difference between various
shapes (Gompertzian, Avrami’s, logistic, more or
less detailed simulations and our mechanistic ap-
proach) is very minute at long times. This means
that the agreement of the experimental data with
a given sigmoidal shape can hardly be used as
a proof of the correctness of the phenomenological
model used.
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Finally, as indicated in Fig. 4 for the small
time scale, we may suggest that the Gompertzian
shape is rather inappropriate for the description of
the early phase of the tumor growth. This is also
supported by (17) and it is likely that a parabolic
function can be more appropriate in this case. Clini-
cally, however, the very early phase of tumor growth
is difficult, if not impossible, to detect but in the in-
termediate and late phases of the development,
when the tumors become diagnosable, their dynam-
ics is Gompertzian.
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