
ACTA PHYSICA POLONICA A No. 6 Vol. 138 (2020)

Ground State of Beryllium Atom
Using Variational Monte Carlo Method

S.B. Domaa,∗, H.S. El-Gendyb,
M.A. Abdel-Khaleka and M.E. Mohameda

aFaculty of Science, Alexandria University, Egypt
bCollege of Science and Humanities, Shaqra University, KSA

Received: 19.06.2020 & Accepted: 02.09.2020

Doi: 10.12693/APhysPolA.138.838 ∗e-mail: sbdoma@alexu.edu.eg

The variational Monte Carlo method is applied to calculate the ground-state energy eigenvalues and
eigenfunctions of a beryllium atom. The obtained wave functions are used to calculate the mean distance
of the electrons from the nucleus and the mean distance between the electrons. The computations were
carried out with the trial wave functions in the form of the Slater determinant multiplied by a correlation
function corresponding to the interactions between the electrons. Two different kinds of orbital functions
as well as two different types of correlation functions are used in the calculations. The obtained results
of the ground-state energy eigenvalues and radii are very satisfactory when compared with the exact
values and the previous findings.

topics: beryllium atom, variational Monte Carlo method, trial wave functions, correlation functions

1. Introduction

There are many kinds of approximate methods
which involve minutely the Schrödinger equation of
the many-electron systems. Among them are the
variational method [1], the perturbation method [2],
the Hartree–Fock (HF) method [3], the ab initio
HF (RHF) method [4], the configuration interaction
(CI) method [5], which is a post-HF linear varia-
tional method, the diffusion Monte Carlo method [6]
and the variational Monte Carlo (VMC) method [7].
In the case of the VMC method, its proficiency
has been proven in many calculations of atoms and
molecules. The VMC method is based on incorpo-
rating the variational principle and the estimation
of high-dimensional integrals by sampling the inte-
grands using a set of randomly generated points.
As a result, the integrals converge faster using the
VMC technique than more conventional techniques
based on sampling the integrands on a regular grid
for problems involving more than a few dimensions.
Moreover, the statistical error in the estimate of the
integral decreases as the square root of the number
of points sampled, irrespective of the dimensionality
of the problem. Thus, many studies take advantage
of using the VMC method to study the atomic and
molecular properties. Let us shed light on the most
important ones.

Sa nu-Ginarte et al. [8] calculated the ground
state of Be and its first excited states by using
the direct variational method and considering the
systematic asymmetric nature of the trial wave
function. A cutoff function was added to ensure

confinement boundary conditions and a trial wave
function was built up from hydrogenic functions.
However, the interaction between the electrons was
ignored in [8], thus the correlation functions were
not used at all. On the other hand, Wu and
Meng [9] applied the perturbation theory to the
ground-state energy of a beryllium atom by incorpo-
rating double parameters in the Hamiltonian. The
eigenvalues were determined then with a double-fold
perturbation scheme, where the spin–spin interac-
tion of electrons from different shells of the atom
was also considered. The obtained ground-state en-
ergy result was in satisfactory agreement with the
experiment. Also, it was found that the Coulomb
repulsion of the inner-shell electrons enhances the
effective nuclear charge seen by the outer-shell elec-
trons and the shielding effect of the outer-shell elec-
trons to the nucleus was also notable compared with
that of the inner-shell electrons.

Doma et al. [10] applied the VMC method to
investigate the total energies of the excited states
of the helium atom. The strong magnetic field ef-
fect on the energy was investigated there and illus-
trated graphically. The results were in good agree-
ment with the most recent accurate and exact val-
ues. Umrigar et al. [11] proposed modifications to
the simple diffusion Monte Carlo algorithm that
greatly reduces the time-step error. The improved
algorithm had the time-step error smaller by a fac-
tor of 70 to 300 in the energy of Be, Li2 and Ne. For
other observables, the improvement was even larger.
The possible effective time step with the improved
algorithm was typically a factor of a few hundred
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larger than the time step used in the Green’s func-
tion Monte Carlo domain. In addition, they pre-
sented optimized 109 parameters of the trial wave
function for Be used in combination with their al-
gorithm and an exceedingly accurate ground-state
energy was obtained. In [12], for example, the VMC
was applied to compute the energies of the 110+

state, the derivatives of the total energy and the ion-
ization energies of He and a hydrogen negative ion
in the magnetic field regime 0–10 a.u. The calcula-
tions were based on two types of compact and ac-
curate trial wave functions which at first were used
in the calculation of energies in the absence of the
magnetic field. The results were in good agreement
with the most recent results. Furthermore, Alexan-
der and Coldwell [13] used the VMC method with
the features of 118 trial wave function forms for se-
lected ground and excited states of helium, lithium
and beryllium atoms. The purpose was to deter-
mine which characteristics give the most rapid con-
vergence toward the exact non-relativistic energy.
It turned out that fully antisymmetric functions are
more accurate than those which use determinants
and that exponential functions are more accurate
than linear ones.

Further, the VMC method was also applied to in-
vestigate the ground state and some excited states
of the lithium atom and its ions [14] up to Z = 10
in the presence of an external magnetic field regime
with γ ' 0–100 a.u. The effect of increasing the
field strength on the ground-state energy was in-
vestigated and precise values for the crossover field
strength were reported. The calculations were
based on using accurate forms of trial wave func-
tions which were put forward in calculating ener-
gies in the absence of the magnetic field. Fur-
thermore, the value of γ at which the ground-
state energy of the lithium atom approaches zero
was calculated. The obtained results were in good
agreement with the most recent and exact values.
Another application of the VMC method followed
to light molecules [15] to evaluate the ground-state
energy of a confined hydrogen molecule H2. More-
over, in [16], the binding energies of the hydro-
gen molecule and its molecular ion in the presence

of an aligned magnetic field regime between 0
and 10 a.u. were computed with the use of the
VCM. The calculations were based on two types of
compact and accurate trial wave functions which
were used in calculating energies in the absence of
the magnetic field. Finally, Frolov andWardlaw [17]
developed a variational method which facilitates the
construction of very compact and relatively accu-
rate wave functions for four-electron atomic sys-
tems. In contrast with the remaining methods, the
procedure is relatively simple in application and can
be used for an arbitrary four-electron atomic sys-
tem. Again, the results were in good agreement
with the most recent and exact values.

In the present paper, we applied the VMC
method to compute the ground-state energy of the
beryllium atom. For this, we constructed the wave
function using the Slater determinant (SLD) with
two different correlation functions. In addition, we
used modified orbital hydrogenic wave functions in
the SLD with one of the used correlation functions.
With the use of the constructed wave functions,
the mean distance of the electrons from the nucleus
and the mean distance between the electrons were
calculated.

2. Hamiltonian of the system

The non-relativistic Hamiltonian in the infinite
nuclear mass approximation for four electrons in the
field of a nucleus of charge Z (in the Hartree atomic
units) is given by

H = −1

2

4∑
i=1

∇2
i −

4∑
i=1

Z

ri
+

4∑
i<j

1

rij
, (1)

where ∇i is the vector momentum of the i-th elec-
tron, Z is the nuclear charge (Z = 4), ri is the
distance between the i-th electron and the nucleus
of Be and rij is the distance between the i-th and
the j-th electron. It is convenient to transform the
kinetic energy part of (1) into the mutually indepen-
dent distance coordinates, ri, rij and the functions
of the polar angles of the electrons of the nucleus, θi
and φi. The general Hamiltonian in the Hylleraas
coordinates is then [18]:
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3. Method of calculations
and trial wave functions

Our calculations are based on using the VMC
method which is regarded as one of the most im-
portant tools in studying atoms and molecules. It is
built on a combination of two ideas. Namely, (i) the
variational principle and the Monte Carlo evalua-
tion of integrals using importance sampling based
on the Metropolis algorithm and (ii) the VMC
method is utilized to compute the quantum expec-
tation values of an operator with a given trial wave
function. Given a Hamiltonian operator and a trial
wave function, it is then possible to calculate the
least energy eigenvalues of a given state of an atom
with respect to the parameters of the used trial wave
function. This approach is explained briefly in the
previous works of Doma et al. [10, 12, 14–16].

The ground-state trial wave function for the Be
atom symbolically written has the form of

ψ (Be) = ψ0f(r12r13r14r23r24r34), (3)
where ψ0 is the SLD function and f is the corre-
lation function due to the interactions between the
electrons. If we neglect the interactions between
the electrons, then the ground-state trial wave func-
tion with the total spin S = 0 and its z-component
Sz = 0 may be symbolically expressed by

ψ0 =
1√
4!

×

∣∣∣∣∣∣∣∣∣
1s (1)α(1) 1s (1)β (1) 2s(1)α (1) 2s(1)β(1)

1s (2)α (2) 1s (2)β (2) 2s (2)α (2) 2s(2)β(2)

1s (3)α (3) 1s (3)β (3) 2s (3)α (3) 2s(3)β(3)

1s (4)α (4) 1s (4)β (4) 2s (4)α (4) 2s(4)β(4)

∣∣∣∣∣∣∣∣∣ ,
(4)

where α(i) and β(i) represent the spin-up and spin-
down functions of the i-th electron, respectively.
The functions 1s(i) and 2s(i), in turn, stand for
the orbital functions of the states (n, l) = (1, 0) and
(2, 0) of the i-th electron, respectively. In the cal-
culations, we used two types of orbital functions.
The first is the hydrogenic function and the second
is a modified hydrogenic function. It is well known
that the hydrogenic function constitutes a sufficient
basis for energy calculation. Trial wave functions
constructed from hydrogenic basis are used to study
the beryllium atom under the compression effect ne-
glecting electron–electron correlation [8, 19] with
good results. Accordingly, we use these functions
in constructing the first two trial wave functions in
our calculations. These functions are given, with
the usual notations, in a.u., by

1s =
1√
π
Z3/2 e−Zr (5)

and

2s =
1√
π

(
Z

2

)3/2(
1− Zr

2

)
e−

Zr
2 . (6)

We will treat Z as a variational parameter and de-
note it by Z

′
.

By some simple algebra and substituting for the
hydrogen wave functions 1s (i) and 2s (i), we can
easily obtain the function ψ0. As a result, ψ0 is
a linear combination of terms constructed from the
single-particle hydrogenic wave functions in such
a way that the total spin of the system is S = 0
and its z-component is MS = 0.

For the correlation function f , we used two dif-
ferent types of correlations. The first one is the
Jastrow correlation function which is a product of
exponential functions [20], i.e.,

f1 =

4∏
1=i<j

exp

(
rij

l (1 + krij)

)
, (7)

where k is the variational parameter. To satisfy the
cusp conditions [21], we assume that

l =

{
4 for like spins
2 for unlike spins

(8)

hence k1 is for the like spins and k2 for the un-
like spins. Therefore, our first trial wave function is
given by

ψ1 = ψ0f1 (9)
and it contains three variational parameters, i.e.,
k1, k2 and Z

′
.

The second correlation function is a product of
the following functions [22]:

f2 =

4∏
1=i<j

(
1 +Arij exp (−Brij)

)
. (10)

where B is the variational parameter. To satisfy the
cusp conditions we assume that

A =

{
1
4 for the like spins,
1
2 for the unlike spins.

(11)

hence B1 is for the like spins and B2 for the unlike
spins. Therefore, our second trial wave function is
given by

ψ2 = ψ0f2 (12)
and it contains three variational parameters, i.e.,
B1, B2 and Z

′
.

Furthermore, we constructed the third trial wave
function ψ3 using the modified radial hydrogenic
wave functions [23] in the SLD (4) and where the
correlation function is f2 while the function 1s is
given by (5). Then,

2s =
1√
4π

√
Z
′3√

8c20 − 12c0 + 6

(
2c0 −

Z
′
r

2

)
e−

Z
′
r

2 ,

(13)
where Z

′
and c0 are variational parameters. Hence,

ψ3 contains four variational parameters, i.e., c0, B1,
B2 and Z

′
.

4. Results and discussion

Our investigations in the present paper are based
on applying the VMC method to find the least en-
ergy eigenvalue of the ground-state of the beryllium
atom. To achieve this goal, we used three trial wave
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TABLE I

Values of the parameters which produced the best
values of the ground- state energy eigenvalue of
beryllium.

ψ1 ψ2 ψ3

Z
′

3.965 3.2885 3.2885
k1 2.2 – –
k2 0.135 – –
B1 – 0.001 0.001
B2 – 0.88 0.88
c0 – – 2.7

TABLE II

Ground-state energy eigenvalue of beryllium E by us-
ing the three trial wave functions. The values of the
standard deviations are given.

E [a.u.] σ

ψ1 −14.6557 0.0013
ψ2 −14.664401 0.0013
ψ3 −14.667313 0.0019

exact [24] −14.667356508 –
previous [25] −14.66735 –

functions which are in the form of SLD functions
multiplied by correlation functions. Two types of
correlation functions are considered. In these cal-
culations, the SLD with modified hydrogenic radial
functions multiplied by our second correlation func-
tion is also used. All energies are given in atomic
units with a set of 2.5× 107 Monte Carlo points to
make the statistical error as low as possible. Since
the principle of the VMC method depends on find-
ing the minimum energy by using the appropriate
trial wave function, therefore in this study we fo-
cus on finding a simple trial wave function which
can produce a minimum energy eigenvalue for the
ground-state of beryllium in good agreement with
the corresponding exact value and accompanied by
the least possible standard deviation.

In Table I, we present the parameter values of
the three trial wave functions which produced the
best values of the calculated ground-state energy
and standard deviations of the Be atom.

The corresponding values of the ground-state en-
ergy eigenvalues of beryllium calculated for the best
three trial wave functions are given in Table II. The
corresponding values of standard deviations are also
given. The exact value and the previous value are
also included in Table II.

In Fig. 1, we present the variation of the ground-
state energy of the beryllium atom with respect to
two parameters Z

′
and k1. For this case, the first

trial wave function ψ1 is used.
The variations of the standard deviation associ-

ated with the ground-state energy of beryllium us-
ing ψ1, ψ2 and ψ3, with respect to the number of
VMC points, are provided in Fig. 2.

Fig. 1. Variations of the ground-state energy of
beryllium, calculated by using the trial wave func-
tion ψ1 with respect to the parameters Z

′
and k1.

The value of k2 is 0.135.

Fig. 2. Variations of the standard deviation asso-
ciated with the ground-state energy of beryllium
with respect to the number of VMC points by us-
ing ψ1, ψ2 and ψ3.

Fig. 3. Variations of the ground-state energy of
beryllium, calculated by using the trial wave func-
tion ψ2 with respect to the parameters Z

′
and B1.

The value of B2 is 0.88.

841



The 100 years anniversary of the Polish Physical Society — the APPA Originators

TABLE III

Mean distance of the electrons from the nucleus
and the mean distance between the electrons in the
ground-state of beryllium.

〈ri〉 〈rij〉
ψ1 1.079 1.7463
ψ2 1.41286 2.31126
ψ3 1.10045 1.7820

previous [24] 1.49319434912 2.5454427433

Fig. 4. Variations of the ground-state energy of
beryllium, calculated by using the trial wave func-
tion ψ2 with respect to the parameters Z

′
and B2.

The value of B1 is 0.001.

Fig. 5. Variations of the ground-state energy of
beryllium, calculated by using the trial wave func-
tion ψ3 with respect to the parameters Z

′
and c0.

B1 = 0.001 and B2 = 0.88.

The behavior of the ground-state energy of the Be
atom as a function of Z

′
with respect to the param-

eter B1 when the value of B2 is given, and with re-
spect to B2 when B1 is given, is presented in Figs. 3
and 4, respectively. These results were obtained
with the use of the ψ2 trial function.

Figure 5 demonstrates the change of the ground-
state energy of the beryllium atom calculated using
the trial wave function ψ3. The energy dependence
is shown for the parameters Z

′
and c0.

To check the accuracy of the three used trial wave
functions in achieving good results for other ground-
state characteristics of the beryllium atom, we cal-
culated the mean distance of the electrons from the
nucleus and the mean distance between the elec-
trons. These are given according to

〈ri〉 =
1

n

〈
ψ

∣∣∣∣ n∑
i=1

ri

∣∣∣∣ψ〉
〈ψ|ψ〉

(14)

and

〈rij〉 =
2

n(n− 1)

〈
ψ

∣∣∣∣ n∑
i<j

rij

∣∣∣∣ψ〉
〈ψ|ψ〉

, (15)

where n = 4.
In Table III, we present the mean distance of the

electrons from the nucleus 〈ri〉 and the mean dis-
tance between the electrons 〈rij〉. Corresponding
previous values reported in [24] are also given in
Table III.

5. Conclusion

In this paper, we considered the VMC method
which has been proven to be a very powerful
tool for studying quantum systems in the physics
field, atomic and molecular physics in particular.
The VMC technique provides a simple, robust and
efficient way to solve the ground-state energy of
a quantum many-particle system. Since the method
is relatively insensitive to the size of the system, it
can be applied to large systems; where some other
methods are computationally not feasible. The ma-
jor advantage of the VMC method is the possibility
to freely choose the analytical form of the trial wave
function, which may contain a highly sophisticated
term, in such a way that the electron correlation is
explicitly considered. This is an important feature
valid for the VMC methods which are therefore ex-
tremely useful to study physical cases, where the
electron correlation plays a crucial role. For these
reasons, this method can be extended to study much
more complex many-body quantum mechanical sys-
tems involving higher dimensions.

Accordingly, we studied the effect of three differ-
ent types of correlation functions associated with
trial wave functions of the form of the SLD for
the configuration of the ground state of the beryl-
lium atom. Furthermore, to check the suitability
of using these trial wave functions in the calcula-
tions of other characteristics of this atom, with the
least number of variational parameters, we used our
three optimized trial wave functions in the calcula-
tions of the mean distance of the electrons from the
nucleus and the mean distance between the elec-
trons in the ground-state of beryllium. In conclu-
sion, we noticed that the obtained result concerning
the ground-state energy eigenvalue of the beryllium
atom by using the third trial wave function ψ3 is
in better agreement with the corresponding exact
value rather than the other two trial wave functions,
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while the standard deviations by using the functions
ψ1 and ψ2 are better than the corresponding one by
using ψ3.

The obtained results also showed that the VMC
method can be applied successfully for the inves-
tigation of the ground-state characteristics of the
beryllium atom by a suitably chosen trial wave func-
tion, which takes into account the correlation part,
due to the interactions between the electrons and
the cusp condition.
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