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Stochastic resonance in the majority vote model on scale-free networks, exposed to a weak periodic
signal, is investigated by means of Monte Carlo simulations and theoretically using heterogeneous mean
field approximation and linear response theory. In numerical simulations, spectral power amplification
shows a maximum as a function of the intensity of internal noise for a broad range of parameters of the
model which confirms the occurrence of stochastic resonance. For the model on weakly heterogeneous
or heterogeneous uncorrelated scale-free networks in the adiabatic limit of slowly varying periodic
signal, a good quantitative agreement is obtained between predictions of the mean field approximation
and results of Monte Carlo simulations. For the model on scale-free networks with fully developed
heterogeneity, the occurrence of structural stochastic multiresonance characterized by double maxima
of the spectral power amplification at different values of the intensity of internal noise is predicted
theoretically which is not observed in Monte Carlo simulations.
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1. Introduction

The majority vote (MV) model [1, 2] is a stochas-
tic model of opinion formation in which agents with
two opinions on a given subject — represented by
two-state spins — update their opinions at discrete
time steps. The opinion evolution is influenced by
the opinion of the majority of their neighbors with
certain probability (1 − q), where 0 ≤ q ≤ 1/2 and
q is the parameter controlling intensity of internal
noise. The MV model is a nonequilibrium counter-
part of the Ising model for which an update rule for
the spins depends only on the state of the system
in their neighborhood (there is no global Hamilto-
nian) and does not obey the detailed balance con-
dition. It was shown that the MV model on reg-
ular d-dimensional lattices d = 2, 3, 4 . . . [1, 3–5]
as well as on different complex networks [6–14] ex-
hibits a second-order phase transition from a disor-
dered (paramagnetic, PM) state to an ordered (fer-
romagnetic, FM) state at 0 < qc < 1/2. In fact,
much effort was made to determine the universal-
ity class for this transition. Interestingly, it has re-
cently been shown that a first-order FM transition
can occur in the MV model with agents endowed
with certain forms of inertia [15, 16].

The critical properties of the MV model are rela-
tively well understood, however, much less is known
about the effect of a periodic signal on this model
(in the form of an external bias of the majority opin-
ion). For example, it was shown that a response of

the MV model on regular lattices to such a stimula-
tion can exhibit maximum periodicity at a non-zero
level of the internal noise q [17]. This result is an ex-
ample of stochastic resonance (SR), a phenomenon
in which a (usually nonlinear) system stimulated by
a weak periodic signal shows a maximally periodic
behavior for non-zero intensity of external or inter-
nal noise [18–20]. On the other hand, in the Ising
model, SR consisting in the maximization of the pe-
riodicity of the response of the system to a weak os-
cillating magnetic field at a non-zero temperature
was reported in a broad variety of cases, e.g., in
the model on regular lattices [21–25] and on dif-
ferent complex networks [26–28]. The investigation
of SR in systems on regular and complex networks
is an important topic in statistical physics [29–31].
Thus, in this paper, the occurrence of SR in the MV
model with an external periodic signal on heteroge-
neous complex scale-free (SF) networks [32, 33] is
demonstrated by means of Monte Carlo (MC) sim-
ulations and the numerical results are compared to
analytical predictions obtained using the heteroge-
neous mean-field approximation (MFA) and the lin-
ear response theory (LRT).

Stochastic multiresonance (SMR) is a type of SR
in which the periodicity of the response of a nonlin-
ear system to a weak oscillating signal is maximized
for several intensities of the external or internal
noise [34, 35]. SMR was observed, e.g., in systems
of many interacting units such as neurons [36–39],
threshold elements [40], spins in the Ising model [28]
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and — for narrow intervals of the amplitude of the
oscillating signal — in the MV model on regular and
small-world lattices [17]. In particular, the so-called
structural SMR was reported in the Ising model on
certain SF networks [28]. Its occurrence is related to
strong heterogeneity of SF networks leading to the
divergence of the critical temperature for the FM
transition in the thermodynamic limit [41]. Struc-
tural SMR consists in the maximization of the pe-
riodicity of the response of the model with a large,
although finite number of spins to a weak oscillat-
ing magnetic field for at least two different temper-
atures. In this paper, it is shown that under similar
assumptions concerning the degree of heterogeneity
of SF networks, the analytical calculations based on
the MFA and LRT predict the occurrence of SMR in
the MV model. According to these predictions, the
response of the appropriate MV model with a large
number of spins to a periodic signal should exhibit
maximum periodicity for two different non-zero val-
ues of the parameter q characterizing the level of in-
ternal noise. However, in contrast to the case of the
Ising model on SF networks, MC simulations of the
MV model do not confirm the appearance of SMR.

2. Model

2.1. Majority vote model with external
periodic signal on complex networks

The model under study and the method of char-
acterization of SR in this model is introduced in
this section. The MV model without an external
signal consists of agents represented by two-state
spins si = ±1, i = 1, 2, . . . N located in the nodes of
a network of interactions which change their opin-
ions taking into account the opinion of the majority
of their neighbors. The probability per unit time
(rate) that the spin si in node i flips is

wi(s) =
1

2

(
1−

(
1− 2q

)
sisgni

)
, (1)

where s denotes the spin configuration and q is the
model parameter controlling the intensity of inter-
nal noise. The signum function sgni is defined as

sgni = sgn

 ∑
j∈nni

sj

 , (2)

where

sgn(x) =


−1 for x < 0,

0 for x = 0,

+1 for x > 0

(3)

and where nni denotes a set of the nearest neigh-
bors of the node i, i.e., that of nodes connected
directly by an edge to the node i. In this way, the
agents follow the opinion of the majority of their
neighbors with the probability (1 − q) or the op-
posite opinion with the probability q. The sets of
the nearest neighbors for the consecutive nodes de-
pend on the network topology. Here, the studied
MV model on complex heterogeneous networks is

characterized by the degree distribution p(k) (dis-
tribution of the number of edges ki attached to the
nodes i = 1, 2, . . . N). In particular, the case of SF
networks with p(k) ∝ k−γ , with γ > 2 [32, 33] is
investigated.

In this paper, we consider the effect of a weak
periodic signal of the amplitude A� 1 in the form
of an external bias of the majority opinion on the
behavior of the MV model. It results in the periodic
time-dependence of the spin flip rate (1) via

sgni = sgn

 ∑
j∈nni

sj +A sin(ω0t)

 . (4)

The response of the MV model to this form of pe-
riodic stimulation is studied as a function of the in-
ternal noise parameter q for different frequencies ω0

and different degree distributions p(k). The re-
sponse signal is assumed as the time-dependent
weighted magnetization S(t) = 1

N〈k〉
∑N
i=1 kisi(t),

where 〈k〉 is the mean degree of nodes and t denotes
the discrete MC simulation steps. Such weighted
magnetization is a typical order parameter in sys-
tems on heterogeneous networks and was used, e.g.,
in the investigation of SR in the Ising model on SF
networks [28]. It is verified that SR can be observed
in the MV model as the level of internal noise q is
varied. For this purpose, one of typical measures of
SR, called the spectral power amplification (SPA),
is investigated as a function of q, defined as:

SPA =
|P1|2

A2
, (5)

P1 =
1

T0

T0∫
0

S(t)e iω0tdt, (6)

where T0 = 2π/ω0 is the period of the oscillating
signal and P1 is the corresponding Fourier compo-
nent of the response signal. In the systems with
SR, the SPA should show a maximum at a non-zero
noise level. In the case of the MV model, the SPA
vs. q shows a maximum at a non-zero level of the
internal noise q = qmax > 0.

It should be mentioned that the assumption
A� 1, meaning weak periodic signal, is typical in
the studies of SR but not necessary. It is used
in most systems exhibiting SR since it facilitates
theoretical analysis which can be then performed
on the basis of the LRT [19, 20]. In the case of
the MV model studied in this paper, defined by
(1) and (4), the applicability of the LRT is lim-
ited by the model’s threshold character which leads
to the situation when even an infinitesimally weak
signal with A→ 0 can cause a finite response in the
weighted magnetization S(t) (see Sect. 4). Never-
theless, the assumption A� 1 is kept here since it
enables a direct comparison of the properties of SR
in the MV model on complex networks with those in
the corresponding Ising model which were obtained
under the assumption of a weak oscillating magnetic
field [26–28]. Relaxing this assumption can lead,
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e.g., to the occurrence of SMR for the amplitudes
A close to natural numbers, as in the case of the
MV on regular networks [17]. However, this sort of
SMR is not structural SMR since it results from the
form of the spin flip rate (4), containing the signum
function, rather than from the topology of the net-
work of interactions, hence, it is not investigated in
this paper.

2.2. Models for scale-free networks

SF networks are characterized by the degree dis-
tribution p(k) = 0 for k < kmin and by p(k) = Ck−γ

for kmin ≤ k ≤ kmax, where kmin and kmax are min-
imum and maximum degrees of nodes, and C is the
normalization constant. The moments of order ν of
the degree distribution are thus

〈kν〉 =
kmax∫
kmin

p(k)kν dk. (7)

For the purpose of investigation of SR in the model
under study, it is convenient to distinguish between
SF networks with the number of nodes N → ∞
(the thermodynamic limit) and SF networks with
a large but finite N . It is believed that the oc-
currence of SMR might be related to finite-size ef-
fects. In the thermodynamic limit, it is fulfilled that
kmax → ∞, thus C = (γ − 1) (kmin)

γ−1. The mean
degree of nodes, i.e., the first moment of the degree
distribution 〈k〉 is finite for γ > 2 which imposes
a lower limit on the possible values of the expo-
nent γ. Even if 〈k〉 is finite, higher-order moments
of the degree distribution 〈kν〉, ν > 1, diverge for
γ < ν + 1. In particular, for the study of many mod-
els on SF networks, including the Ising model, it
is important that the second moment of the degree
distribution 〈k2〉 → ∞ for 2 < γ ≤ 3 [33, 41]. In the
case of networks with a finite number of nodes N ,
the maximum degree of nodes kmax = kmax(N) is of
course finite — it depends on the method of gener-
ation of the SF network and in general increases as
a power function of N . Thus, for large kmax (large
N), there is still C ≈ (γ − 1)

(
kmin

)γ−1 and all mo-
ments of the degree distribution are finite.

A simple and efficient way to generate SF net-
works with given degree distributions is to use the
configuration model (CM) [42]. This algorithm
starts with assigning to each node i — in a set
of N nodes — a degree, i.e., a random number
ki of ends of edges drawn from a given probabil-
ity distribution p(k), with kmin < ki < N and with
the condition that the sum

∑N
i=1 ki is even. The

network is completed by connecting pairs of the
ends of edges chosen uniformly at random to make
complete edges, respecting the preassigned sequence
ki and under the condition that multiple and self-
connections are forbidden. In SF networks gener-
ated from the CM for large but finite N , the max-
imum degree in practice scales as kmax ≈ kmin

√
N

for γ > 3 and kmax ≈ kminN
1/(γ−1) for 2 < γ ≤ 3.

For γ ≥ 3, the SF networks obtained from
the CM are weakly heterogeneous, i.e., they do
not contain many hubs (nodes with very large de-
grees) and simultaneously are uncorrelated (the cor-
relation between degrees of nodes connected di-
rectly by edges is negligible). In contrast, for
2 < γ < 3, these networks are strongly heteroge-
neous and correlated (disassortative) since nodes
with high degrees are more probably connected
by edges to nodes with small degrees. In or-
der to avoid such correlations, the networks can
be generated from the uncorrelated configuration
model (UCM) [43]. The only difference between
the UCM model and the CM model is that the de-
grees ki, assigned randomly to the nodes, are lim-
ited to the interval kmin < ki <

√
N . The SF net-

works generated from the UCM are uncorrelated for
γ > 2 but their heterogeneity is not fully developed
since the maximum degree scales as kmax ≈

√
N

for γ > 2.
In the Ising model on SF networks, SMR was ob-

served only in the case of strongly heterogeneous
networks with 2 < γ < 3 generated from the CM.
It is a finite-size effect related to a strong depen-
dence of the critical temperature for the FM tran-
sition on the number of spins N . SMR was not
observed in the case of weakly heterogeneous net-
works, i.e., networks with γ ≥ 3 generated from
the CM or networks with γ > 2 generated from
the UCM [28]. Therefore, in this paper, SR in the
non-equilibrium counterpart of the Ising model, the
MV model on SF networks with different exponents
γ > 2 in the degree distributions generated from the
CM and UCM models, is investigated. The objec-
tive of this investigation is to verify whether and
under what conditions SMR occurs.

3. Heterogeneous mean field approximation

In this section, we derived the time-dependent
equation of the weighted magnetization of the pe-
riodically driven MV model in the MFA by taking
into account the heterogeneous structure of the un-
derlying SF networks. A starting point is the mas-
ter equation for a general spin system in which dy-
namics is governed by the transition rates w(s|s′)
from the spin configuration s′ to s. The probability
P (s, t) that at the time t, the spin configuration is
s obeys

dP (s, t)

dt
=

∑
s′

[
w (s|s′)P (s′, t)− w (s′|s)P (s, t)

]
. (8)

We take into account that in the MV under study at
each time step a transition occurs between spin con-
figurations s′ → s differing just by one spin flipped,
say si. The transition rate w (s|s′) = wi (s

′) is given
by (1). By performing the ensemble average of (8),
the following equation is obtained:
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∂〈si〉
∂t

= −2
〈
siwi (s)

〉
= −〈si〉+ (1− 2q)〈sgni〉,

(9)
where 〈si〉 denotes the mean value of spin in node i
and
〈sgni〉 = (+1)Pr (sgni = +1)

+(−1)Pr (sgni = −1) . (10)

Let us consider the MV model on a general het-
erogeneous network, where the nodes are charac-
terized by their degrees ki which are drawn from
a given probability distribution p(k). The mini-
mum degree of nodes is kmin. The maximum de-
gree kmax is a function of the number of nodes N ,
as explained in Sect. 2.2, and is finite for finite N ,
and in general diverges to infinity in the thermody-
namic limit (N → ∞). For a weak periodic signal
with the amplitude A� 1, the signum function (4)
is equal to +1 (−1) if the majority of spins in the
neighborhood of the node i has the orientation up
(down) or if the numbers of spins with opposite ori-
entations are equal, while the periodic signal should
have a positive (negative) value. The latter situa-
tion is possible only if the number of neighbors of
the i node, i.e., the degree ki, is even. Assuming
that orientations of different spins belonging to the
neighborhood of the node i are independent two-
state random variables, it follows that

Pr (sgni = ±1) =

ki∑
l=
⌈
ki
2

⌉
(
ki
l

) l∏
j

Pr (sj = ±1)
ki−l∏
j′

Pr (sj′ = ∓1)

+
δki, even

2

(
1± sgn

(
A sin(ω0t)

))(ki
ki
2

)

×
ki/2∏
j

Pr (sj = +1)

ki/2∏
j′

Pr (sj′ = −1) , (11)

where d·e denotes the ceil function, j, j′ denote the
nodes connected with the node i by edges and

δki, even =

{
0 for k = 1, 3, 5 . . .

1 for k = 2, 4, 6 . . .
(12)

In order to evaluate the probabilities in (11), the
heterogeneous MFA will be applied. The main as-
sumption for this approximation is that the nodes
can be divided into classes according to their de-
grees and that spins in the nodes belonging to the
same class are equivalent. Then for the spin si lo-
cated in the node with degree ki there is

Pr (si = ±1) =
1± 〈si〉

2
=

1± 〈ski〉
2

, (13)

where 〈ski〉 denotes the mean value of the spin in
each node with degree ki.

Progress in analytical considerations can be
achieved in the case of uncorrelated networks.
In such networks, the probability that an edge

attached to the node i points at the other end at
the node with degree k does not depend on ki and
is kp(k)/〈k〉. Thus, among the l nodes in the first
product in (11), containing spins with the same
orientation as that of the spin in the node i, for-
mally there are lkp(k)/〈k〉 nodes which belong to
a given class of nodes with degree k. Similarly,
among (ki − l) nodes in the second product in (11)
— containing spins with the opposite orientation
than that of the spin in the node i— formally there
are (ki − l) kp(k)/〈k〉 nodes belonging to a class of
nodes with degree k, etc. As a result, products over
the indices of nodes j, j′ in (11) can be replaced
with the product over the degrees (classes) of nodes
k. Now, using (13), the probabilities in (11) can be
written as

Pr (sgni = ±1) =
ki∑

l=
⌈
ki
2

⌉
(
ki
l

)

×
kmax∏
k=kmin

(
1± 〈sk〉

2

)l kp(k)〈k〉
(
1∓ 〈sk〉

2

)(ki−l) kp(k)〈k〉

+
δki, even

2

(
1± sgn

(
A sin(ω0t)

))(ki
ki
2

)

×
kmax∏
k=kmin

(
1− 〈sk〉2

4

) ki
2
kp(k)
〈k〉

. (14)

Approximating (1± 〈sk〉)
kp(k)
〈k〉 ≈ 1± kp(k)

〈k〉 〈sk〉 and
introducing the weighted magnetization as the or-
der parameter,

S =
1

N〈k〉

N∑
i=1

ki〈si〉 =
kmax∑
k=kmin

kp(k)

〈k〉
〈sk〉, (15)

where, again, the summation over the indices of
nodes in the first sum of (15) is replaced with the
sum over the degrees (classes) of nodes k, it is ob-
tained that

Pr (sgni = ±1) =

ki∑
l=
⌈
ki
2

⌉
(
ki
l

)(
1± S
2

)l(
1∓ S
2

)ki−l

+
δki,even

2

(
1± sgn

(
A sin(ω0t)

))

×
(
ki
ki
2

)(
1− S2

4

) ki
2

. (16)

For large ki, the binomial distribution in the first
term can be approximated by the normal distribu-
tion while in the second term the Stirling approxi-
mation

2−ki
(
ki
ki
2

)
≈ 2√

2πki
(17)

can be made. Thus,
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Pr (sgni = ±1) ≈
1

2
± 1

2
erf

(√
ki
2

S√
1− S2

)

+δki, even

(
1± sgn

(
A sin(ω0t)

))(1− S2
)ki/2

√
2πki

.

(18)
Substituting (18) into (10) and then into (9), it
turns out that for spins located in nodes with large
degrees one has

∂〈si〉
∂t

= −〈si〉+ (1− 2q)erf

(√
ki
2

S√
1− S2

)

+
2(1− 2q)

(
1− S2

) ki
2

√
2πki

sgn
(
A sin(ω0t)

)
δki, even.

(19)
Multiplying now both sides of (19) by ki, perform-
ing summation over all nodes and, next, replacing it
on the right-hand side by the sum over the degrees
(classes) of nodes, the MF equation for the time-
dependence of the order parameter is obtained:

∂S

∂t
= (1− 2q)

kmax∑
k=kmin

kp(k)

〈k〉
erf

(√
k

2

S√
1− S2

)

−S +
(1− 2q)√

2π

kmax∑
k=kmin

p(k)
√
k
(
1− S2

)k/2
〈k〉

×sgn
(
A sin(ω0t)

)
. (20)

In the last term, which describes the effect of the
periodic signal, the sum taken over classes of nodes
with only even degrees is approximated by half of
sum over all classes of nodes. In such a case, the
factor 2 present in (19) now disappears.

In general, (20) should provide a good approxima-
tion of the time-dependent order parameter S in the
MV model on uncorrelated networks with large de-
grees of nodes. For SF networks under study, these
conditions mean that γ > 3 (γ > 2) in the case of
networks generated from the CM (UCM) and that
kmin is large enough. However, some remarks on
the validity of the MF approach in the model under
study are necessary.

Firstly, the MF approximation in (9) well de-
scribes the relaxation of the order parameter toward
its equilibrium value but does not take into account
its fluctuations. Hence, the MFA yields more cor-
rect results in adiabatic limit ω0 → 0 of a slowly
varying periodic signal when the model remains in
a quasi-equilibrium regime. Secondly, the introduc-
tion of the order parameter S in (15) is possible only
because of partial linearization of (14). As a result,
(20) becomes more correct if the model remains in
the vicinity of the PM state with all 〈si〉 ≈ 0 and
S ≈ 0. The mentioned limitations of the MF ap-
proach are, in some cases, a source of discrepancies
between the results of simulations of (20) and those
of direct MC simulations of the corresponding MV
model reported in Sect. 5.

The absence of the periodic signal (A = 0) causes
that (20) possesses stationary solutions S0 of the
form

S0 = (1− 2q)

kmax∑
k=kmin

kp(k)

〈k〉
erf

(√
k

2

S0√
1− S2

0

)
.

(21)
This solution fulfils the condition dS/dt = 0. More-
over, one can show that in the thermodynamic limit,
when N →∞, the stable solution of (21) is S0 = 0
for q > qc (corresponding to the disordered (PM)
phase), while for q < qc there are two symmetric
stable solutions: ±S0 and S0 > 0. The latter solu-
tions correspond to the ordered (FM) phase. The
critical value of the internal noise for the FM tran-
sition [11] is given as

qc =
1

2
−
√
2π

4

〈k〉
〈k3/2〉

(22)

In the case of SF networks with γ > 5/2,
the MFA predicts the FM type of transition at
qc =

1
2 −

√
2π
4

γ−5/2
γ−2 (kmin)

−1/2 in the MV model.
On the other hand, for 2 < γ < 5/2 the moment
〈k3/2〉 is infinite and it turns out that qc = 1/2.
This only means that the FM phase is stable for any
level of the internal noise. This also corresponds to
the divergence of the critical temperature for the
Ising model on SF networks with 2 < γ < 3 [41].

Note that the MFA is valid only in the thermody-
namic limit, however, it can also provide valuable
estimates for the critical behavior of the model with
a large but finite number of N nodes. In this case,
FM ordering with S0 > 0 occurs below a crossover
value q∗c = q∗c (N) — still given by (22). In fact, the
condition q∗c < 1/2 is always valid, and

q∗c (N)
N→∞−−−−→


qc, for γ > 5

2
1
2 , for 2 < γ < 5

2 , with

1− 2q∗c (N) ∝
(
kmax(N)

)γ− 5
2

(23)
Taking into account the scaling of the maximum
degree with N (Sect. 2.2) in the case of SF net-
works generated from the CM model, one has that
(1− 2q∗c (N)) ∝ N (γ−5/2)/(γ−1), i.e., q∗c (N) con-
verges fast to qc = 1/2, while in the case of SF
networks generated from the UCM model one has
that (1− 2q∗c (N)) ∝ N (γ−5/2)/2, i.e., q∗c (N) con-
verges more slowly to qc = 1/2.

4. Linear response theory

In the presence of a weak periodic signal, where
A � 1, an approximate solution of (20) can be
obtained in the framework of the LRT. The last
term of (20) is treated as a small perturbation and
so the solution is assumed in the form of small
oscillations around the fixed point corresponding
to a given value of q. Then one has (i) S0 > 0 for
q < qc in the thermodynamic limit (for q < q∗c (N)
in the case of SF network with a finite number of
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nodes N) and (ii) S0 = 0 for q > qc (q > q∗c (N)).
Now, assuming that S = S0 + ξ and further
expanding (20) up to linear terms in ξ, one obtains

dξ

dt
= − ξ

τ
+ α(t). (24)

This is a linear differential equation for the time-
dependence of ξ which converges exponentially
with characteristic damping time τ :

τ−1 = 1− 2√
2π

1− 2q

(1− S2
0)

3/2

×
kmax∑
k=kmin

k3/2p(k)

〈k〉
exp

(
− kS2

0

2− 2S2
0

)
(25)

to an asymptotic oscillating solution determined
by the external perturbation

α(t) =
(1− 2q)√

2π

kmax∑
k=kmin

k1/2p(k)

〈k〉

×
(
1− S2

0

)k/2
sgn
(
A sin(ω0t)

)
. (26)

Now, expanding α(t) in the Fourier series, one
yields

α(t) =

∞∑
j=1

αj sin (jω0t) , (27)

αj = (28) 4
jπ

1−2q√
2π

∑
k

k1/2p(k)(1−S2
0)
k/2

〈k〉 for j = 1, 3, 5 . . .

0 for j = 2, 4, 6 . . .

For q > qc
(
q > q∗c (N)

)
, there is S0 = 0 in the PM

phase and

τ−1 = 1− 2(1− 2q)√
2π

〈k3/2〉
〈k〉

. (29)

Note that τ−1 = 0 for q = qc
(
q = q∗c (N)

)
, as

expected, and also τ−1 → 1 as q → 1/2. The
latter means that for q > qc the damping time τ is
a decreasing function of q and

αj =

{
4
jπ

1−2q√
2π

〈k1/2〉
〈k〉 for j = 1, 3, 5 . . .

0 for j = 2, 4, 6 . . . .
(30)

The asymptotic solution of (24) when t→∞ is

ξ(t) =

∞∑
j=1

αj√
τ−2 + (jω0)

2
sin
(
jω0t− φj

)
, (31)

where φj = tan−1 (jω0τ). With the use of (5), (6)
and (31), the SPA can be expressed as

SPA =
1

4A2

|α1|2

τ−2 + ω2
0

. (32)

In particular, at q = qc (q = q∗c (N)),

SPA
∣∣∣
q=qc,q=q∗c (N)

=
1

A2π2ω2
0

(
〈k1/2〉
〈k3/2〉

)2

. (33)

Note that for the model on SF networks in the
thermodynamic limit, (33) predicts

SPA|qc =


(γ− 5

2 )

(Aπ2ω2
0kmin)

2
(γ− 3

2 )
, for γ > 5

2

0, for 2 < γ < 5
2

when 〈k3/2〉 → ∞.
(34)

In the case γ > 5/2 and for q > qc, the SPA de-
creases to zero as q → 1/2. For the model on SF
networks with a large but finite N , SPA|q=q∗c (N)

is always finite and also for q > q∗c (N) it de-
creases to zero as q → 1/2. For γ > 5

2 there is

SPA|q=q∗c (N)
N→∞−−−−→ SPA|q=qc , while for 2 < γ < 5

2 ,
one has SPA|q=q∗c (N) ∝ (kmax)

2γ−5. The latter is
also

SPA|q=q∗c (N) ∝

{
N

2γ−5
γ−1

N→∞−−−−→ 0 from the CM,
Nγ−5/2 N→∞−−−−→ 0 from the UCM.

(35)
However, the above argument does not guarantee
that at least a local maximum of the SPA is ob-
served at q = qc (q = q∗c (N)) since the SPA can,
in principle, grow as q decreases below the critical
(crossover) value.

It should be noted that the LRT and (32) cannot
predict the SPA correctly. This is because even for
A→ 0 the α(t) perturbation in (24) remains finite.
Since even an infinitesimally small periodic signal
affects strongly the probability of the spin flip (4),
thus the periodic term in (20) obviously remains fi-
nite for A > 0. As a result and taking into account
(27) and (28), the response ξ(t) also remains finite
for any amplitude of the periodic signal. Moreover,
ξ(t) does not decrease to zero for A→ 0, as required
when the LRT is applied. Hence, the SPA (32) di-
verges in the limit A → 0 and no correct results
are obtained with the LRT. A similar problem with
the accuracy of the predictions of the LRT occurred
also in the investigation of SR in the MV model
on regular lattices [17]. This is in contrast with
most systems in which SR is observed, including the
Ising model on regular lattices [21–25] and complex
networks [28].

5. Results and discussion

Theoretical predictions resulting from the hetero-
geneous MFA and LRT concerning SR in the MV
model on weakly (with γ = 6) and marginally (with
γ = 3) heterogeneous SF networks are summarized
in Figs. 1 and 2, respectively, and compared with
results of MC simulations. Predictions of the MFA
were obtained by evaluating the SPA from (5) and
(6) using the time-dependent order parameter S(t)
from numerical simulations of (20) and those of the
LRT from (27)–(32). According to the MFA, in
both cases in the absence of the periodic signal the
model undergoes FM transition at qc < 1/2. In
all cases for a broad range of the frequencies of
the periodic signal ω0, all theoretical and numer-
ical curves SPA vs. q exhibit a maximum which
is a signature of SR. The maxima of the SPA ob-
tained from MC simulations and from simulations
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Fig. 1. SPA vs. q for the MV model on an SF
network obtained from the CM with N = 64000,
kmin = 5 and γ = 6 for the periodic signal with
A = 0.01 and (a) ω0 = 2π/8, (b) ω0 = 2π/32, (c)
ω0 = 2π/128. Symbols — results from MC simula-
tions, gray solid lines are guides to the eyes, thick
solid lines — results from numerical solution of the
appropriate MF equations (20) and from (5) and
(6), thin solid lines — results of the LRT, (27)–(32).

of the MF equations are located at q slightly below
qc, although they are somewhat shifted with respect
to each other, and those resulting from the LRT are
located at q ≈ qc which is best visible for small fre-
quencies ω0. Qualitative agreement between theo-
retical curves SPA vs. q and those from MC simula-
tions is good in all cases and the best quantitative
agreement is observed between predictions of the
MFA from (20) and results of MC simulations in the
adiabatic limit ω0 → 0 and for q > qc, as expected
(Figs. 1c and 2c). Quantitative agreement is better
in the case of model on the SF network with γ = 6
but is satisfactory also for γ = 3, when the critical
value qc for the MV model does not diverge with the
number of nodes N , in contrast to the Ising model.
On the other hand, in the adiabatic limit, the max-
ima of the SPA obtained using the LRT are much

Fig. 2. As in Fig. 1 but for an SF network with
γ = 3.

too high, also as expected. The overall picture of
SR in the MV model discussed above qualitatively
resembles that for the Ising model on SF networks
with γ ≤ 3 [28].

Concerning the MV model on strongly hetero-
geneous SF networks, the cases of networks with
2.5 < γ ≤ 3 and with 2 < γ < 2.5 must be distin-
guished. In the former case, according to the MFA,
in the absence of the periodic signal the model
still undergoes FM transition at a critical value
q = qc < 1/2. The curves SPA vs. q obtained from
MC simulations still exhibit a single maximum typi-
cal of SR, independently of whether the SF network
was generated from the CM or the UCM. This re-
sult is confirmed by theoretical analysis which is
in particular based on the MFA, although quanti-
tative agreement with results of MC simulation is
deteriorated (not shown). Situation is more com-
plex in the case of the MV model on SF networks
with 2 < γ < 2.5. In Figs. 3 and 4, theoretical pre-
dictions from the MFA and LRT for the model on
SF network with γ = 2.25 are summarized and
compared with results of MC simulations. Results
for the models on SF network with fully developed
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heterogeneity obtained from the CM (Fig. 3) as well
as on the uncorrelated SF network obtained from
the UCM (Fig. 4) are shown. According to the
MFA, in both cases — in the absence of the periodic
signal — the MV model undergoes FM transition at
a crossover value q = q∗c (N) which approaches 1/2
in the thermodynamic limit. Also, in both cases and
for a broad range of frequencies ω0, the curves SPA
vs. q obtained from MC simulations exhibit a sin-
gle maximum indicating occurrence of SR, although
for small ω0, in particular in the model on network
generated from the CM, this maximum is accompa-
nied with a sort of a hump. The hump is due to
a slow increase of the SPA with q in the FM phase.
No additional maxima of the SPA were found in MC
simulations, thus SMR was not observed. This is in
contrast with the Ising model on SF networks with
2 < γ < 3 (such that the crossover temperature for
the FM transition diverges in the thermodynamic
limit) generated from the CM in which SMR was
observed in MC simulations [28].

In the case of the MV model on SF network
with γ = 2.25 generated from the CM model, even
a qualitative agreement between the curves SPA vs.
q evaluated from the MFA and LRT and obtained
from MC simulations is not satisfactory and, more-
over, it deteriorates with approaching the adiabatic
limit ω0 → 0 (Fig. 3). Both theoretical approx-
imations predict that for small frequencies of the
periodic signal, the SPA exhibits a sharp maximum
close to or at q = q∗c (N) (see Fig. 3b, 3c) as well
as a broad maximum at q < q∗c (N), in the FM
phase. The occurrence of the two maxima of the
SPA is a signature of SMR which is a finite-size
effect which can be deduced from the location of
the sharp peak of the SPA at the crossover value
q = q∗c (N). These theoretical predictions are simi-
lar to those for the Ising model on the SF networks
with 2 < γ < 3 and fully developed heterogeneity
[28] but for the MV model they are in contradiction
with results of MC simulations. In the case of the
MV model on the SF network with γ = 2.25 gen-
erated from the UCM model, agreement between
the curves SPA vs. q evaluated from the MFA and
LRT and obtained from MC simulations is better
(see Fig. 4). Both theoretical approximations pre-
dict that for the whole range of the studied fre-
quencies ω0, the SPA exhibits only one maximum,
i.e, there is no SMR in accordance with results of
MC simulations. Moreover, in the adiabatic limit
ω0 → 0, the curve SPA vs. q evaluated from the
MFA using (5) and (6), (20) approaches the curve
obtained from MC simulations in a similar manner
as for the MV model on weakly heterogeneous SF
networks (see Figs. 1 and 2), although the predicted
values of the SPA are too low. It should be noted
that the maxima of the SPA in Figs. 3 and 4, ob-
tained both from theoretical predictions and MC
simulations, are much lower than those in Figs. 1
and 2 and the maxima for the MV model on the
SF networks generated from the CM (see Fig. 3)

Fig. 3. SPA vs. q for the MV model on an SF
network obtained from the CM with N = 64000,
kmin = 5, γ = 2.25, for the periodic signal with
A = 0.01 and (a) ω0 = 2π/8, (b) ω0 = 2π/32, (c)
ω0 = 2π/128. Symbols — results from MC simula-
tions, gray solid lines are guides to the eyes, thick
solid lines — results from numerical solution of the
appropriate MF equations (20) and from (5) and
(6), thin solid lines — results of the LRT, (27)–(32).

are lower and occur at higher values of q than for
the model on SF networks generated from the UCM
(see Fig. 4). For small ω0, when the (possibly sharp)
maxima are located close to q = q∗c (N), this con-
firms predictions of the LRT that in the case of
the MV model on SF networks with fully devel-
oped heterogeneity the maxima of the SPA decrease
and their location approaches q = 1/2 faster with
N → ∞ than in the case of the model on the cor-
responding uncorrelated SF networks.

The comparison between Figs. 3 and 4 suggests
that an important source of disagreement between
theoretical predictions from the MFA or LRT and
results of MC simulations concerning SR in the
MV model on SF networks with 2 < γ < 2.5 are
correlations between degrees of nodes present in
the network generated from the CM. In particular,
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Fig. 4. As in Fig. 3 but for an SF network obtained
from the UCM.

this results in overestimation of the crossover value
q∗c (N) and hence in a shift of the sharp maximum
of the SPA toward higher values of q for small fre-
quencies ω0. As the above-mentioned correlations
are not present in the network generated from the
UCM, the agreement between theory and MC sim-
ulations is much improved. However, other factors
can also contribute to the differences seen in Fig. 3.
First, it is difficult to generate SF networks with
small γ and fully developed heterogeneity from the
CM: nodes with very high degrees occur relatively
seldom and even for a large but finite number of
nodes N , the exponent γ estimated from the nu-
merical degree distribution P (k) can be higher than
expected from the model. According to the esti-
mations from the LRT, this should correspond to
a lower maximum degree kmax(N), lower crossover
value q∗c (N) as well as a higher maximum of the
SPA for low frequencies of the periodic signal ω0,
i.e., SPA|q=q∗c (N). Besides, agreement between the
curves SPA vs. q for low ω0 evaluated from the MFA
using (5)–(20) and obtained from MC simulations
deteriorates with decreasing exponent γ even if cor-
relations between degrees of nodes are not present

in the SF network (Figs. 1c, 2c, 4c). This suggests
that the relaxation of the MV model toward equi-
librium at q 6= q∗c (N) also takes place more and
more slowly with increasing γ so that the adiabatic
limit in which the predictions of the MFA should be
more correct is not easily reached even for small ω0

accessible in simulations.

6. Summary and conclusions

SR in the MV model on SF networks with dif-
ferent heterogeneity and correlations between de-
grees of nodes, generated from the CM or UCM,
was investigated by means of MC simulations and
theoretically using heterogeneous MFA and LRT. In
MC simulations for a broad range of frequencies of
a weak external periodic signal, maxima of the SPA
as a function of q, the parameter controlling the
degree of stochasticity in the model, were observed
which confirms the occurrence of SR. Theoretical
predictions, particularly those based on direct ap-
plication of equation for the time-dependence of the
order parameter derived in the MFA, in the adia-
batic limit of slowly varying periodic signal, shows
a satisfactory quantitative agreement with results
of MC simulations for the model on weakly hetero-
geneous SF networks or on heterogeneous uncorre-
lated SF networks. In the case of the MV model
on strongly heterogeneous SF networks, structural
SMR is predicted theoretically which, however, is
not observed in MC simulations. This quantita-
tive difference between predictions of the MFA and
LRT and results of MC simulations may be due to
strong correlations between degrees of nodes of SF
networks with fully developed heterogeneity which
makes the MFA derived for uncorrelated networks
incorrect.

The absence of structural SMR in the non-
equilibrium MV model on heterogeneous SF net-
works is in contrast with its occurrence in the re-
lated equilibrium Ising model. Nevertheless, from
the point of view of modeling opinion formation,
it is worth noting that the response of the MV
model to a weak external signal can be maximized
for optimum non-zero degree of internal (social)
noise. In particular, it was shown in this paper
that such an optimum response due to SR can occur
in the MV model on SF networks which are often
used as models for networks of social and economic
interactions.
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