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Accurate atomic data of tungsten is of great importance for plasma research groups including the
International Thermonuclear Experimental Reactor because its facing material is made of tungsten (W)
which displays complex spectra. There is a wealth of experimental and theoretical atomic data for most
tungsten ions but published atomic data of W66+ (O-like W) is scarce. This paper presents a large scale
accurate atomic structure and spectral data for this ion in order to fill out this gap. The presented data
is calculated by employing two methods: the relativistic multi-configuration interaction approximations
and the multireference many-body perturbation theory. Transitions between the excited and ground
states of 2l–nl′ are considered in the calculations, where n = 3, 4, 5 and 6, l is s or p states and l′ is
the proper corresponding orbital angular momentum of shell n. The correlation effects, the relativistic
and QED effects are included in the calculations. Detailed atomic data includes energy levels, weighted
oscillator strengths and transition rates for electric–dipole (E1), electric–quadrupole (E2), magnetic–
dipole (M1) and magnetic–quadrupole (M2) transitions. The generated data has been used to construct
synthetic spectra for E1, E2, M1 and M2 transitions. The comparison of the procured atomic data with
the published experimental and theoretical data of W66+ demonstrates good agreement. Findings of
this paper are essential for W-plasma diagnostics and fusion research, as well as for other applications
of highly ionized tungsten ions.
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1. Introduction

Tungsten (W) presents remarkable metallic prop-
erties such as high density, corrosion resistance,
high melting point and low vapor pressure [1] which
make it an excellent facing material for tokamak
and fusion devices. The facing material of the In-
ternational Thermonuclear Experimental Reactor
(ITER), which is believed to be the next step in
the experimental fusion devices, is made of tungsten
reinforced composite with beryllium and carbon-
fiber [2]. As a result, tungsten appears as impurities
in produced plasma of those experiments. Many
ionization stages of tungsten radiate strongly in the
spectral range from VUV to soft X-ray [3] which
suggests that a significant energy fraction in the
plasma is shattered via radiation emitted by tung-
sten ions. Therefore, it is important to compile re-
liable database of atomic structure, multipole tran-
sitions and synthetic spectra for tungsten at wide
temperature ranges and ionization stages in order
to facilitate interpreting and validating experimen-
tal observations of the corresponding plasma.

There are currently vast experimental and the-
oretical efforts to produce high ionization states
in tungsten plasma in order to investigate tung-
sten ions and their belongings [4–9]. The published

results include measurements of transition ener-
gies with poor precision [4, 5] and improved pre-
cision upon measuring tungsten transitions emit-
ted from laser-produced plasmas [6–9]. The elec-
tron beam ion traps (EBIT-I and EBIT-II) at the
Lawrence Livermore National Laboratory (LLNL),
which were built to study the spectroscopy of
highly charged ions produced at well-controlled
conditions, greatly improved the quality of mea-
suring atomic properties of tungsten ions. Sev-
eral studies of X-ray and EUV spectra of tung-
sten ions at different charges have already been car-
ried out [10–16]. Tokamak plasma experiments have
also produced several ionization stages of tungsten
ions [17–20].

Theoretical calculations for ionization stages and
atomic processes for tungsten ions in plasma attract
several research groups. Previous calculations fo-
cused on the structure and spectral atomic data,
as well as modeling experimental results [21–28].
Kramida and Shirai compiled theoretical and ex-
perimental data of energy levels and spectral lines
for multiply ionized W2+ through W73+ ions [29].
However, forbidden transitions lines, which are
linked to plasma diagnostics of electrons density
and temperature, were not subject to comparable
research efforts [30–33].
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The aim of this paper is to provide large-
scale atomic data calculations for energy levels
and spectra of allowed and forbidden transitions
of O-like W ion to be used in future laboratory
plasma studies and fusion research. Two calcu-
lation methods are applied: the relativistic con-
figuration interaction (RCI) method of the flexi-
ble atomic code (FAC) [34] and the multireference
many-body perturbation theory (MR-MBPT) [35]
which is close to the method of the multireference
Moller–Plesset perturbation theory (MR-MP) [36].
The RCI method yields quantitative predictions
which perfectly agree with experimental findings,
including for example those published in [37, 38].
The MR-MBPT method generates accurate atomic
data for many electron systems [35]. Large-scale rel-
ativistic atomic calculations are employed between
ground state shell to higher excited states, i.e., from
2s22p4 to 2s22p3 nl, 2s2p5 to 2s2p4nl or 2p6 to
2p5nl, where n = 3, 4, 5 and 6, and l is the proper
angular momentum of n shells. The inner shell tran-
sitions ∆n = 0 for n = 2 are not included in the
current calculations because their transitions are in
a different spectral region, the UV region.

The RCI method yields accurate data because it
uses the standard Coulomb–Dirac Hamiltonian that
includes the spin–orbit interaction, mass-shift and
other leading relativistic effects. In order to account
for finite effects of the nuclear size, nuclear potential
is assumed to be exerted by a hard sphere. Some
quantum electrodynamic QED corrections are also
included in the Hamiltonian. Correlation and rela-
tivistic effects are calculated by the following Dirac–
Fock method. Correlation, relativistic and QED ef-
fects play an important role in the atomic structure
of many electron systems and their spectral prop-
erties. The multi-configuration expansion includes
correlation effects of all orders. In practice, effects
of electron correlation on the fine structures and
transitions are more important than QED. There-
fore, high orders of QED corrections, such as retar-
dation and nuclear recoil, are not seen in the RCI
of the FAC. The MR-MBPT calculation method is
based on the relativistic multi-configuration inter-
action approximations. It is advantageous over the
RCI method because it involves additional correc-
tions including QED effects and vacuum polariza-
tion which are calculated by applying the second
order perturbation theory. However, the second or-
der perturbation theory makes the matrices of the
Hamiltonian very large when dealing with a high
number of electrons in open shells or high shell
numbers which may lead to a data jam that termi-
nates the run abruptly, without accomplishing the
required calculations.

Energy levels of O-like W presented in this pa-
per are calculated by the RCI and the MR-MBPT
methods. The latter method is also used to pro-
duce multipole transitions data that is essential
for low density and hot dense tungsten plasma
diagnostics. The produced data, which includes

energy levels, transition rates, oscillator strengths
and wavelengths for electric dipole (E1), electric
quadrupole (E2), magnetic dipole (M1) and mag-
netic quadrupole (M2), is presented in a handy for-
mat and is used to construct synthetic spectra for
multipole transitions.

2. Theoretical methods
and computational procedure

2.1. Multireference many-body
perturbation theory

The proposed method starts from the Rayleigh–
Schrödinger perturbation theory for a multi-
configurational model space. Detailed derivation
and formulation can be found in [38], while a brief
overview is presented below. The Schrödinger
equation of a many-electron system is solved by
perturbation expansion. One starts from the
eigenproblem

HDCBϕI = EIϕI , (1)
where the Dirac–Coulomb–Breit Hamiltonian
HDCB for particle i at position ri is given as

HDCB =
∑
i

(
Hd(i)−

Z

ri

)
+
∑
i<j

(
1

rij
+Bij

)
.

(2)
Here, Hd(i) is the free electron Dirac Hamiltonian,
ri is the electron radial coordinate and rij is the
vector separation between the electrons i and j.
The Breit interaction Bij is given as

Bij = −αiαj
2rij

+
(αirj)(αjri)

2rijr2ij
(3)

and αi is the matrix vector of the Pauli spin ma-
trices σi. The Breit Hamiltonian (3) is composed
of several energy operators for electrons in electric
and magnetic fields
Bij = Ĥ0 + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4 + Ĥ5 + Ĥ6, (4)

where Ĥ0 =
∑
i

p2
i

2mi
+ V0 is the non-relativistic

Hamiltonian, and Ĥ1 = −
∑
i p

4
i /(8c

2m3
i ) is the

relativistic energy correction to the Hamiltonian.
Next,

Ĥ2 = −
∑
i>j

qiqj
2rijmimjc2

(
pipj+

(rijpi)(rijpj)

r2ij

)
(5)

is the interaction between the magnetic dipole
moments of the particles of charges qi and qj
which partly accounts for retardation and is called
the orbit–orbit interaction. In turn, interaction
between the spin magnetic moment and the orbital
magnetic moments (the spin–orbit interaction) is
described with

Ĥ3 =
µB

c

∑
i

si

ε(ri)× pi
mi

+
∑
j>i

2qi
mir3ij

rij × pj

 ,

(6)
where ε(ri) is the electric field at the particle’s
position.
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TABLE I

Distribution of the total angular momentum (J) over
even and odd parities of energy levels of O-like W
(the total number of energy levels is 1546).

J 0 1 2 3 4 5 6 7 8
even 62 151 185 158 112 66 29 10 1
odd 59 153 182 159 112 65 31 9 2

Next, Ĥ4 = ih
8πc2

∑
i
qi
m3

i
piε(ri) is the Darwin

term from the Dirac theory and Ĥ5 is the spin–spin
interaction, i.e.,

Ĥ5 = −32µ2
Bπ

3

∑
i>j

[
sisjδ(rij) +

1

r3ij
sisj

−3(sirij)(sjrij)

r5ij

]
. (7)

The first term of Ĥ5 is called the contact interac-
tion and the second one is the dipole–dipole inter-
action. The last part of the Dirac–Coulomb–Breit
interaction is Ĥ6, describing the interaction between
spin and orbital magnetic moments with an exter-
nal magnetic field H:

Ĥ6 = 2µB
∑
i

H(ri)si +
qi
mic

A(ri)pi. (8)

The fundamental step of the MR-MBPT method
is to divide the full Hamiltonian Hilbert space into
two model spaces M and N — both spaces are
orthogonal. The non-Hermitian effective Hamilto-
nian is contained inM model space, while N con-
tains the perturbation expansion. The energy lev-
els are the eigenvalues of the effective Hamiltonian.
The multi-configuration interaction effects within
the model space are fully included and interactions
betweenM and N are taken into account with the
perturbation method.

We may also write the Hamiltonian as
HDCB = H0 +H

′
, (9)

where
H0 =

∑
i

Hd(ri) + U(ri) (10)

and

H
′

=
∑
i

[
− U (ri) +

Z

ri
+
∑
i<j

1

rij
+Bij

]
. (11)

The potential U(ri) includes the screening effect
of all electrons. It is approximated by a local cen-
tral potential derived from Dirac–Fock–Slater self-
consistent field calculations. It should be chosen
properly to make the perturbation potential H

′
to

be as small as possible. The model space M con-
tains all configurations of O-like W ion in the shell
n = 2. The N space contains all electronic con-
figurations of the excited electrons of shell number
n = 3, 4 or 5 or 6, as listed in Table I. Strong con-
figuration mixing among the highly excited levels is
obtained by applying the multireference configura-
tion interaction approximations [34].

Values of the energy levels are attained by solv-
ing a generalized eigenvalue problem. The total
energy EI is the sum of the eigenvalues of the
multi-configuration Dirac–Coulomb–Breit Hamilto-
nian matrix (ECII ) and the second order perturba-
tion corrections due to QED corrections in the space
N (E

(2)
I ), where CI stands for the configuration in-

teraction approximations.

2.2. Relativistic multi-configuration
interaction method

The RCI method starts from the Dirac equa-
tions. In sight of the electron screening of possible
configurations, an imitation mean configuration is
constructed for O-like W ion with a fractional oc-
cupation number. The bound states systems are
calculated by configuration mixing approximations
with a convenient specification of a mixing scheme.
A modified iteration for the self-consistent Dirac–
Fock–Slater potential is used to derive the local
central potential. The radial orbitals for the con-
structed basis states are, then, derived by the con-
sequent local central potential. A correction pro-
cedure is applied to reduce errors in energy lev-
els through the diagonalization of the relativistic
Hamiltonian.

The atomic ion relativistic Hamiltonian is the
sum over the Dirac Hamiltonian of a single elec-
tron due to an electron–electron interaction and nu-
clear charge contribution potentials. The electron–
electron interaction contains the bound electrons
averaged potential and the exchange interactions
local approximations. A self-consistent iteration is
constructed to solve the Dirac coupled equations,
wherein the radial orbital from the prior step is used
to derive the potential. The small component of
the Dirac coupled equations is eliminated to con-
vert the coupled equations to only one differential
equation after performing some appropriate trans-
formations. The standard Numerov method is used
to solve the produced differential equation numeri-
cally. The theory of the FAC is detailed in [33].

The single multipole approximation method is
used to calculate the radiative transition rates Afi.
This method uses the second quantization with the
help of the Racah algebra, thus one applies the ex-
pression [39, 40]:

gfAfi =
α3ω3

2L
(αω)2L−2Sif , (12)

where Sif is the generalized strength of the tran-
sition line, given as Sfi =

∣∣〈ϕf |OLM |ϕi〉∣∣2 with the
multipole operator OLM and ω = Ef − Ei as the
transition energy. The rates of forbidden transi-
tions (A-values in s−1) in terms of line strength Sif
(arb.u. — arbitrary units) and the wavelength λ
(Å) are [41]:

AE1

fi =
2.0613× 1018

(2J + 1)λ3
SE1

if , (13)
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AM1

fi =
2.6973× 1013

(2J + 1)λ3
SM1

if (14)

AE2

fi =
1.1199× 1018

(2J + 1)λ5
SE2

if , (15)

AM2

fi =
1.4909× 1013

(2J + 1)λ5
SM2

if , (16)

where E1 is the electric dipole, E2 is the electric
quadrupole, M1 is the magnetic dipole and M2 is
the magnetic quadrupole.

3. Results and discussion

3.1. Energy levels of W66+

Table I presents the electronic configurations of
O-like W which have been considered in the calcu-
lations. They are grouped and listed by the shell
number. There are 1546 generated energy levels of
even and odd parities for shell numbers n = 2, 3, 4,
5 and 6. They are distributed as in Table SI in the
supplementary material [42].

A detailed atomic structure is acquired through
the diagonalization of the system Hamiltonian.
The atomic structure is calculated via the RCI
and the MR-MBPT methods. The two calcula-
tion methods yield energy values with a pretty
good agreement. The difference between the cor-
responding energy values calculated by the two
methods is found to be in the range from −0.893
to 0.791 eV for all energy levels of n = 2, 3, 4, 5
and 6 shells. The maximum percentage difference
is about 0.011%. These slight differences are likely
caused by including QED effects of high orders in
the MR-MBPT method, which seem to be of low
significance in O-like W ion. The calculated data
does not exhibit any mixing among states which
implies that energy levels orderings are similar in
the two calculation methods. Figure 1 shows the
percentage differences distribution of the calculated

Fig. 1. Differences in percent between the calcu-
lated values of energy levels by the RCI method
and the MR-MBPT method.

TABLE II

Comparison with the available published experimen-
tal energy levels of W66+.

State
configuration

J
E [eV]

from [37]
ERCI [eV] EMBPT [eV]

2s22p4 0 0 0

2s22p4 0 61.7 61.338 61.332

2s2p5 1806.0 1807.453 1807.098

2s2p5 1 1890.8 1892.382 1891.884

energy values by RCI and MR-MBPT for shells
from n = 2 to n = 6. In Table II, the calculated
energy levels data demonstrates a good agreement
with published experimental data produced by the
electron beam ion trap [37]. A maximum percent-
age difference between the calculated and experi-
mental data is 0.04%.

3.2. Optically allowed transitions of W66+

The spectral atomic data is based only on the cal-
culations by the MR-MBPT method, because it in-
cludes the QED corrections which are not available
in the RCI method. Accordingly, only atomic data
produced by the MR-MBPT method for the mul-
tipole transitions are presented in Table SII in the
supplementary material [42]. The strong electric
dipole transitions E1 atomic data of O-like W, such
as transition energies ∆E (eV), wavelengths λ (Å),
radiative transition rates Ar (s−1) and weighted os-
cillator strengths ghij is listed in Table II. Transi-
tions in the complexes n = 2l to n′l′, where l is s
or p, n′ = 4, 5, 6 and 7, and l′ is the proper angu-
lar momentum of n′ shell, are considered. Config-
uration state functions which are listed in Table I
are used in the calculations of the electric dipole
transitions E1 atomic data. The calculated E1 val-
ues produce a very large number of lines, therefore,
only strong lines for 2-3, 2-4, 2-5, and 2-6 tran-
sitions with A-value ≥ 1.76× 1014 s−1 are listed
in Table II. It is evident that 2l–3l′ transitions are
the strongest. The electric dipole spectral range is
situated in the wavelength range 0.75–1.44 Å. It is
worth noting that closed subshells are not listed in
the electronic configurations lists.

The comparison of E1 transitions against the
published experimental or theoretical data is only
possible for a few transitions due to the scarcity of
the published experimental and theoretical atomic
data of multipole transitions for O-like W. There-
fore, Table III presents the comparison between the
findings of the current study against the published
experimental values which were measured in the
electron beam ion trap [43] along with calculated
data by the FAC as well as theoretical transition
energies that were calculated by two other meth-
ods: the multi-configuration Dirac–Fock method of
GRASP92 code [44, 45] and the multi-configuration
Dirac–Fock method of (MCDF) code [46].

773



The 100 years anniversary of the Polish Physical Society — the APPA Originators

TABLE III

Comparison of excitation energies ∆E [eV] for some W66+ transitions with published experimental (exp.) and
calculated data (cal.) in a given reference.

Line # Upper state Jup Lower state Jlow

∆E [eV]
Exp.

Ref. [43]
Cal.

Ref. [43]
Cal.

Ref. [44]
Cal.

Ref. [45]
(RCI) (MBPT)

O-1 3s23p2
1/2

3p3/23s1/2 1 3s2
1/2

3p2
1/2

2p2
3/2

0 8592.7 ± 0.7 8588.4 8590.09 8591.4 8589.454 8588.583

O-2 3s1/23p2
1/2

3p2
3/2

3s1/2 2 3s1/23p2
1/2

2p3
3/2

2 8599.4 ± 1.0 8595.26 8595.15 – 8596.980 8597.991

O-3 3s1/23p2
1/2

3p2
3/2

3s1/2 2 3s1/23p2
1/2

2p3
3/2

1 8607.1 ± 1.0 8604.21 8604.13 – 8604.643 8604.763

O-4 3s23p2
1/2

3p3/2 3s1/2 2 3s2
1/2

3p2
1/2

2p2
3/2

2 8644.5 ± 0.6 8640.19 8641.6 8643 8645.269 8645.475

O-5 3s23p2
1/2

3p3/23s1/2 1 3s2
1/2

3p2
1/2

2p2
3/2

2 8654.4 ± 0.6 8649.51 8650.82 8652.2 8654.158 8653.456

O-6 3s2 3p2
1/2

3p3/2 3d5/2 2 3s2
1/2

3p2
1/2

2p2
3/2

2 – 9396.9 – – 9397.047 9397.46

O-7 3s23p2
1/2

3p3/23d5/2 1 3s2
1/2

3p2
1/2

2p2
3/2

2 9413.6 ± 1.2 9413.02 9413.92 – 9413.261 9413.260

O-8 3s23p1/23p2
3/2

3d5/2 3 3s2
1/2

3p2
1/2

2p2
3/2

2 – 10712.38 – – 10712.6 10712.10

O-9 3s23p1/23p2
3/2

3d5/2 2 3s2
1/2

3p2
1/2

2p2
3/2

2 – 10714.94 – – 10712.17 10715.51

O-10 3s23p1/23p2
3/2

3d5/2 1 3s2
1/2

3p2
1/2

2p2
3/2

2 – 10721.66 – – 10722.27 10722.27

The experimental lines appearing in the compari-
son Table III were previously measured by the elec-
tron beam ion trap by Beiersdorfer et al. who la-
beled their predicted O-like W lines as O-0, O-1,
. . . , O-10 [43]. Some of these lines were identified
experimentally but the rest were predicted theoret-
ically. The first theoretically predicted line is O-0.
Its transition energy is 8400.61 eV. In 2012, Beiers-
dorfer et al. pointed out that the O-0 line could not
be experimentally identified but their calculations
predicted the strength of the O-0 line is close to the
observed lines.

The calculated data in the present work supports
the experimental results of Beiersdorfer et al. and
suggests that their calculated data is not accurate
enough, at least for this transition line. It is ac-
cepted in the present work that the O-0 line is
weak as compared to the neighboring transitions.
The transition energy ∆E equals 8402.2 eV, the
weighted oscillator strength ghij equals 2.05× 10−3

and Ar equals 1.26× 1012 s−1 which makes it very
difficult to be experimentally identified as it would
be obscured by stronger nearby transitions.

Beiersdorfer et al. identified the O-2 tran-
sition line for which ∆E = 8599.4 ± 1 eV
and its corresponding wavelength 1.4417 Å as
(3s1/2)J=1–(2p3/2)J=1 [43]. In the present
work, four strong transitions were identified for
the same transition line (O-2). They are:
(i) (3s1/2)J=2–(2p3/2)J=2 with ∆E = 8597.91 eV,
ghij = 0.1702, and Ar = 1.82× 1014 s−1, (ii)
(3s1/2)J=2–(2p1/2)J=2 with ∆E = 8597.05 eV,
ghij = 0.240, and Ar = 1.55 × 1014 s−1,
(iii) (3s1/2)J=0–(2p3/2)J=1 with ∆E = 8596.48

eV, ghij = 0.113 and Ar = 1.21× 1014 s−1, and
(iv) (3d5/2)J=0–(2p3/2)J=1 with ∆E = 8596.29 eV,
gfij = 0.323 and Ar = 2.08 × 1014 s−1. Corre-
sponding wavelengths of these four transitions are
respectively: 1.4419, 1.4420, 1.4422, and 1.4422 Å.
This suggests that these transitions exhibit blending

that makes it difficult to assign each line to a single
transition experimentally. More examples of lines
blending can be identified in Table II.

Calculated transition energies of optically allowed
transitions presented herein compare well with ex-
perimental data. The optically allowed strong tran-
sitions are grouped into: nd–2p, ns–2p and np–2s
transitions, where nd–2p is the dominant. The
strongest transition line is found to be 3d5/2–2p3/2
at wavelength λ = 1.324 Å. Some transition lines in
W66+ undergo blending which makes it difficult to
assign the experimental features to a specific tran-
sition line. In many cases, an experimental line in-
tensifies when it relates to more than one transition.

3.3. Forbidden transitions of O-like W

Forbidden transition lines are important in
plasma diagnostic. Table SIII in [42] presents
the strong forbidden transitions atomic data to
the ground state of O-like W for the electric
quadrupole E2, magnetic dipole M1 and mag-
netic quadrupole M2, respectively. The presented
data includes transition energies ∆E (eV), transi-
tion wavelengths λ (Å), radiative transition rates
Ar (s−1) and weighted oscillator strengths gfij .
The ratio of A-values of strong forbidden transi-
tion Ar to A-values of electric dipole transitions
is found to be of order 10−3 for Ar(E2)/Ar(E1)
and of order 10−5–10−4 for Ar(M1)/Ar(E1)
and Ar(M2)/Ar(E1). The weighted oscilla-
tor strength f -value ratios are of the orders
gfij(E2)/gfij(E1) ∼ 10−3, gfij(M1)/gfij(E1) and
gfij(M2)/gfij(E1) ∼ 10−5. The spectral ranges for
the forbidden transitions are ≈ 0.8–1.2 Å, 0.9–1.4 Å
and 0.8–1.4 Å for E2, M1 and M2, respectively.
To the best of the author’s knowledge, the for-
bidden transition data for O-like tungsten has not
been published anywhere which makes the data pre-
sented in this paper of particular importance in ex-
perimental plasma diagnostics.
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3.4. Calculated synthetic spectra
of O-like tungsten

A Doppler line profile with low energy is em-
ployed to construct synthetic spectra based on the
produced atomic data for electric multipole transi-
tions E1, E2, M1 and M2 (see Fig. 2) in order to
simulate the spectra of low-density tungsten plasma
(electron density ne ≤ 1013 cm−1), where most ions
are in ground states, thus making electrons exci-
tation and de-excitation the main spectra genera-
tion processes. Constructed synthetic spectra for
low-density tungsten plasma are helpful in the diag-
nostic and identification of spectral features of hot-
dense plasma, whose synthetic spectra are favorably
calculated by collisional-radiative models. Line in-
tensity is normalized to unity in arbitrary units.
Figure 2a illustrates the spectrum of optically al-
lowed (electric dipole E1) transitions of W66+.
The strong spectral lines and their transition groups
(2-3, 2-4, 2-5 or 2-6) are identified and labeled. It is
evident that transitions 3d–2p dominate the spec-
trum. Theoretical spectra of forbidden transitions:
E2, M1 and M2 are depicted in Fig. 2c and d. It is
evident that the spectral ranges of these transitions
are comparable. Important forbidden transitions
are situated in the allowed transitions range. These
synthetic spectra are “fingerprints” of the ion struc-
ture of O-like tungsten, because locations of transi-
tion lines remain unchanged in a hot dense plasma
spectrum while intensities are subject to change due
to contributions of other electronic process.

Fig. 2. Theoretical spectrum of: (a) electric–
dipole transitions E1 of W66+, (b) electric–
quadrupole transitions E2 of W66+, (c) magnetic–
dipole transitions M1 of W66+ , (d) magnetic–
quadrupole transitions M2 of W66+.

4. Summary and conclusions

Accurate atomic data related to highly ionized
tungsten is important in plasma and fusion re-
search. Several tungsten ions received considerable

attention in experimental and theoretical research
but O-like tungsten (W66+) has not attracted
enough attention. The relativistic configuration in-
teraction method includes correlation and relativis-
tic effects to all orders and the multi-configuration
expansion is applied in this research to carry out
atomic structure and spectra calculations for W66+

by two methods: the relativistic configuration in-
teraction method of the flexible atomic code and
the multireference many-body perturbation theory
(MR-MBPT) approach. The MR-MBPT includes
QED effects for high orders which makes it advan-
tageous over the relativistic configuration method
of the FAC.

The produced atomic structure and spectral data
included energy levels, wavelengths, transition rates
and oscillator strengths for allowed and forbidden
transitions. The differences in the calculated en-
ergy levels by the two methods are very small which
suggests that the high orders of QED effects do not
have significant contributions to the atomic struc-
ture of O-like tungsten. The produced data for
allowed and forbidden transitions is used to pro-
duce theoretical spectra for O-like W ion consider-
ing the Doppler line profile. The analysis of the syn-
thetic spectra of electric dipole transitions revealed
the following:

• the spectral range is about 0.75–1.44 Å,
• transitions with nd2p are the most important
transitions,

• 3d–2p transitions dominate the spectrum of
electrical dipole transitions E1,

• E2, M1, M2 transitions are situated in the
spectral range of E1 transitions.

To the best of the author’s knowledge, the present
work’s results are accurate and form a complete
database for O-like tungsten.
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