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The paper presents a fast technique to identify the components of specific conductivity tensor of thin
semiconductor planes. The proposed technique is based on a well-known method with a linear loca-
tion of a four-probe tester. It is scientifically backed up by solving the relevant boundary problems
of electrodynamics and characterized by the simplicity of measurements and calculations. Moreover,
the suggested method does not require the use of complicated equipment and also the boundary con-
ditions have been taken into account. Experimental testing has been carried out on monocrystals of
diarsenide of cadmium and diarsenide of zinc. Practical recommendations are given on how to make
the necessary measurements more precise.
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1. Introduction

Researchers now have a thorough study of meth-
ods available to characterize semiconducting ma-
terials which do not show anisotropy of physical
properties [1, 2]. At the same time, in modern
electronics promising semiconducting compounds
of the type A2B5 and A2B6 are more and more
widely used [3–6].

In crystals, we observe anisotropy of electric,
thermoelectric and galvanomagnetic properties due
to the complexity of crystal lattice. In some
cases, stimulated anisotropy of electric properties
of atomic semiconductors under pressure or un-
der the influence of external field can also be ob-
served [5, 6]. As a consequence, the development of
anisotropic semiconductor characterization meth-
ods becomes ever more important.

Probe methods [1, 2] confirmed their efficiency in
measuring specific electroconductivity. Difficulty of
such measurements consists in the fact that a cur-
rent spreading effect appears in these materials, de-
pending on a correlation of the value of conductivity
tensor. That is why the methods which are well-
developed and sufficient for isotropic materials are
not applicable to anisotropic ones.

Scientific literature describes methods in-
tended for specific conductivity measurement like
the Montgomery method [7]. Its essence lies in
a numerical identification of electric potential
distribution on the lateral lanes of the sample.
The Montgomery method puts rigid requirements

on the sample geometry and quality of the lateral
planes. The method has proved its efficiency for
rectangular samples and only in such a case it
is possible to create high quality low-resistance
contacts on the flat lateral planes, although it is not
always possible to achieve it in practice. A certain
problem arises when one needs to analyze conduc-
tivity but the lateral planes are not available or
there are difficulties with an application contact
place. In fact, there are some methods [8] which
are further derived from the Montgomery method.
Such methods increase the accuracy of a specific
conductivity measurement, however they still
set high requirements for the quality of surfaces
of the lateral planes and necessitate the geo-
metrical location of the contacts at the sample
angles.

Quantitative methods identifying specific conduc-
tivity tensor of anisotropic samples were already de-
scribed in scientific literature [9–11]. However, they
do not allow to identify the required values with
high accuracy and they are characterized by an er-
ror of 10–15%. Such methods require lengthy resis-
tance contacts, the creation of which often results
in the destruction of a semiconductor crystal which
renders it unfit for future work.

This paper suggests a technique to identify
the components of specific conductivity tensor of
anisotropic planes and films which is based on
a method with a linear location of a four-probe
tester. This technique is also assessed in terms of
its application and measurement accuracy.

759

http://doi.org/10.12693/APhysPolA.138.759
mailto:wwfilippow@mail.ru


The 100 years anniversary of the Polish Physical Society — the APPA Originators

2. Theoretical background
of the technique

Let us identify the potential distribution with
probe measurement when the current is permanent.
In the fixed mode with absent sources and drain
charge, the vector of current density j, the inten-
sity of field E and the potential ϕ are related to
each other in the following way [12]:

j = σ̂E, E = −∇ϕ, ∇ · j = 0, (1)
where σ̂ is the symmetrical tensor of specific con-
ductivity. For the sample oriented, in particular,
in a way that the tensor has a diagonal shape

σ̃ =

 σx 0 0

0 σy 0

0 0 σz

 , (2)

we can get the differential equation for the po-
tential:

σx
∂2ϕ

∂x2
+ σy

∂2ϕ

∂y2
+ σz

∂2ϕ

∂z2
= 0. (3)

One should take into account that the normal
constituent of the current density on the sample sur-
face is equal to zero everywhere except for the points
under the current electrodes [12]. For the probes
located according to Fig. 1, the following boundary
conditions apply:

∂ϕ

∂x

∣∣∣∣
x=0,a

= 0,
∂ϕ

∂y

∣∣∣∣
y=0,b

= 0,
∂ϕ

∂z

∣∣∣∣
z=0

= 0,

∂φ

∂z

∣∣∣∣
z=d

=
I14
σz
δ (x− x1) δ(y − y1)

−I14
σz
δ (x− x4) δ(y − y4), (4)

where δ(x) is the Dirac delta-function. Its usage is
justified for the current probes with small-size en-
try area. The coordinates of the current probes are
(x1, y1) and (x4, y4).

The boundary problem of (3) and (4) is solved
with the method of separation of variables. As
a result, the final expression for potential ϕ on
the sample surface can be represented in the form
of the double Fourier series

ϕ = − 4I14
abσz

∞∑
k,n=0

Ank
ch (ηkn(d− z))
ηknsh (ηknd)

× cos (αkx) cos (βny) , (5)
where

Ank = ΘnΘk cos (αkx1) cos (βny1)

−ΘnΘk cos (αkx4) cos (βny4) , (6)

αk =
πk

a
, βn =

πn

b
, ηkn =

√
σx
σz
α2
k +

σy
σz
β2
n,

Θi{i=k,n} =

{
1, i 6= 0,
1
2 , i = 0.

(7)

To identify the components of electroconductiv-
ity tensor σx, σy, it is necessary to carry out two

Fig. 1. The scheme of probe location on a rectan-
gular sample.

Fig. 2. The scheme of probe location on a rectan-
gular sample.

independent measurements of current and voltage
with different locations of probes. Firstly, we place
a tester with a linear location of probes on the sam-
ple surface along the line which is parallel to axis
x, then we measure current I14 and potential differ-
ence U23 (in Fig. 1: x1 = (a−s)/2, x4 = (a+3s)/2,
y1 = y4 = b/2). The obtained potential distribution
enables us to find the theoretical potential difference
between probes 2 and 3:

U23 =
I14a

σxbd
L1, (8)

L1 =
16σx
a2σz

∑
k=1,3,5,...,
n=0,2,4,...

Θn
cth (ηknd)

ηkn

× sin

(
1

2
αks

)
sin

(
3

2
αks

)
. (9)

With the ratio value d/s < 0.7, the sample can be
considered to be thin with the calculation error of
less than 2% [1, 2]. In this case, we can do summa-
tion over “k” [13]. As a result, in the approximation
of the thin sample we get the expression for multi-
plier L1, included into (8), namely:

L1 =
s

a
+

∑
n=2,4,6...

2

γβnash (γβna)

×
[
ch (γβn (a− s))− ch (γβns)

+ch (2γβns)− ch (γβn (a− 2s))
]
. (10)

Here, γ =
√
σy/σx reads as the parameter of elec-

troconductivity anisotropy.
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For the second measurement, we place a probe on
the same plane of the sample along the line parallel
to axis y (in Fig. 2: x5 = x8 = a/2, y5 = (b+3s)/2,
y8 = (b−3s)/2) and measure current I58 and distri-
bution potential U67. Analogically, we get the ex-
pression for the correlation of current I58 and volt-
age U67:

U67 =
I58
σy

b

ad
L2, (11)

where L2 is the geometrical factor corresponding
particularly to the considered case of the probe lo-
cation. In the case of thin samples we get:

L2 =
s

b
+

∑
k=2,4,6...

2

αkb/γsh(αkb/γ)

×
[
ch (αk(b− s)/γ)− ch(αks/γ)

+ch(2αks/γ)− ch (αk(b− 2s)/γ)
]

(12)

Using the measurement data, we identify the value
of the dimensionless parameter Q:

Q =
R1

R2
=
U23/I14
U67/I58

, (13)

which we need to calculate the value γ, necessary
for getting the value of the components of specific
electroconductivity tensor.

According to (8) and (11), the “theoretical” rela-
tion Q(γ) can be expressed in the following way:

Q(γ) =
(γa
b

)2 L1

L2
. (14)

3. Technique of measurement procedure

The suggested technique aimed at the measure-
ment of components of special electroconductivity
tensor of a crystal or film can be summarized as
follows:

1. With a certain value of current I14 measure
voltage U23, then using the same linear probe
with current value I58 measure voltage U67

(see Fig. 1 and Fig. 2).
2. Calculate from the experiment the value of

parameter Q = R1/R2 according to (13).
3. Using the relation plot Q(γ) identify the value

of parameter γ by putting in correspon-
dence the “theoretical” and experimental val-
ues of parameter Q (obtained with (14)
and (13)). For some values of relations a/s,
b/s, we showed Q related to anisotropy pa-
rameter γ in Fig. 3.

4. Identify the value of the geometrical factors
L1 and L2 using (10) and (12).

5. Calculate the value of a component of electro-
conductivity tensor σx and σy using:

σx =
I14
U23

a

db
L1, σy =

I58
U67

b

da
L2. (15)

Fig. 3. The diagram showing the relation of pa-
rameter Q value to electroconductivity anisotropy
coefficient γ with a = b and various values of s.

For practical considerations, it is worth to iden-
tify the value of geometrical factors L1 and L2

for the infinite sample (a/s → ∞, b/s → ∞).
As a result of calculations of the relevant limits,
we conclude that for an indefinite plane the expres-
sions (15) can be represented in the following way:

σx =
0.2206

γdt

I14
U23

, σy =
0.2206γ

d

I58
U67

. (16)

For isotropic samples (σx = σy = σ, γ = 1)
we get a well-known formula used to calculate spe-
cific resistance when the measurements are done
with the help of a linear four-probe tester [1, 2]:

ρ =
1

σ
= 4.532

U23

I14
d. (17)

4. Experimental validation and conclusions

The suggested technique aimed at identifying
the components of specific electroconductivity ten-
sor was experimentally tested on anisotropic CdAs2
and ZnAs2 [14, 15] plates. We used clamping
wolframium probes as current and measurement
contacts.

Constant electric current passed through
the samples under study. The current came from
stabilized power supply B5-44, a potential differ-
ence between measuring probes was measured by
voltameter V2-34, the positions of measuring and
current probes were monitored and controlled with
the MBS-10 microscope. The average values of
electroconductivity tensor are given in Tables I
and II. The control values of these components
measured by a standard two-probe method [1, 9]
are also included for comparison. For the practical
measurement of conductivity control values we used
tinker contacts, the ohmic properties of which to
diarsenide of cadmium and diarsenide of zinc were
proved experimentally [3, 4].

One of restrictions that limit the use of the sug-
gested measurement method is the size of the sam-
ple: the transverse size of semiconductors under
study must be bigger than the length of a free path
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TABLE IResults of experimental measurements.

Sample a [mm] b [mm] d [mm] s [mm]
σx [(Ω m)−1] σy [(Ω m)−1]

Proposed
method

Two-probe
method

Proposed
method

Two-probe
method

CdAs2 19.20 22.50 1.00 3.00 41.34 42.10 8.82 8.90
ZnAs2 18.00 20.00 0.85 3.00 2009 2021 509 520

TABLE II

Comparison of experimental measurements and re-
sults obtained with other methods, i.e., (1) — Mont-
gomery [7], (2) — modified Montgomery [8], (3) —
Schnabel [4], (4) — transverse [11].

Sample
σx [(Ω m)−1] σy [(Ω m)−1]

(1) (2) (3) (4) (1) (2) (3) (4)
CdAs2 38.25 39.72 37.33 44.14 8.05 8.14 8.03 9.32
ZnAs2 1908 1926 1905 2181 442 464 443 561

of an electron. The second restriction is the pres-
ence of a flat upper plane, adjacent to the measure-
ment contacts. Also, it is necessary for general resis-
tance of the semiconductor R (in the order of value)
to meet the condition: RA � R � RV (where RA

— the resistance of amperemeter, RV — the resis-
tance of voltmeter).

The advantage of the suggested method is that
it is not necessary to make an ohmic connection to
the sample — this procedure often creates certain
difficulties leading to spoiling the crystal which be-
comes unsuitable for further use. The error of this
technique is determined by the error of the well-
known four-probe method.
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