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The interface between a superconducting Josephson junction and a semiconductor position-based qubit
implemented in coupled semiconductor q-dots is described as a possible base for an electrostatic inter-
face between superconducting and semiconductor quantum computers. A modification of an Andreev
bound state in a Josephson junction by the presence of a semiconductor qubit in its proximity and elec-
trostatic interaction with a superconducting qubit is spotted by the minimalist tight-binding model.
The obtained results allow for the creation of an interface between a semiconductor quantum computer
and a superconducting quantum computer. The existence of topological states of matter is indicated.
They open a perspective for the construction of QISKIT-like software that will describe both types of
quantum computers as well as their interface.
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1. Introduction

Nature largely depends on mass and electric
charge conservation principles. Both of these
physical quantities are quasi-continuous on the
macroscale and on the nanoscale they become the
integer multiplicity of elementary values. The
charge flows in such a way that the energy of
the electric/magnetic field tends to be minimized.
One of the consequences is the repulsion of two
charges having the same sign and the attraction of
two charges of the opposite signs. This is commonly
known as Coulomb’s law. The electric currents flow
also tends to minimize the energy of magnetic field,
therefore the most equilibrium state of an isolated
capacitor is a discharged device. Due to electron
and hole mobility, charge can be used for infor-
mation or energy transfer across metallic or semi-
conductor nanowires. One can use the electric and
magnetic fields as parameters controlling the evolu-
tion of the given physical system with time. Hence,
the desired final state can be achieved upon setting
the system with an initial configuration that is for-
mally expressed by circuit theory, both in the clas-
sical and in quantum regime.

The simple rules of dynamics of charged bil-
liard balls confined in boxes can lead to a sim-
ple scheme for the implementation of logical

operations as a logical inverter or controllable
inverter (CNOT gate), as depicted in Fig. 1
and in [1–6]. However, the electric charge is con-
firmed to be quantized by experiments (except for
the fractional quantum Hall effect where a frac-
tionation of electric charge is observed) and ex-
pressed by electron, proton or hole charge in con-
densed matter systems. The quantization and con-
trol of a single electron flow by distinct integer val-
ues can be achieved in nanotechnological experi-
ments, e.g., in the chain of coupled quantum dots
that can have particularly small diameters in semi-
conductors and in most recent CMOS technology
— so even the size of 3 nm can be achieved for
very highly integrated circuits. In such types of
structures, the use of magnetic fields is less practi-
cal since waveguides and solenoids are very hardly
scalable. Therefore, it is favourable to use only elec-
tric fields as a controlling factor. Here, the situa-
tion promotes Wannier qubits that are also known
as position-based qubits. Wannier qubits use max-
imum localized wavefunctions present in two cou-
pled quantum dots in order to encode quantum in-
formation in a qubit which makes such a qubit dif-
ferent from an eigenenergy-based qubit using two
eigenenergies to span the qubit state. However, it
shall be underlined that even in cryogenic condi-
tions, semiconductors have an intrinsic noise which
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Fig. 1. The Coulomb repulsion principle as
the foundation of the electrostatic classical and
quantum gates as given by an example of the clas-
sical (quantum) inverter (NOT gate) and CNOT
gate (controllable NOT gate). The classical gates
downsized to nanosize will have features of quantum
gates that can be implemented in single-electron
devices [4].

is significantly higher than in the case of supercon-
ductors. Since IBM Quantum Experience [7, 8] uses
low temperature superconductors and a transmon
low noise Josephson junction qubit, one can think
about the possibility of merging these two quan-
tum computer architectures into one chip. This
leads to the necessity of constructing an interface
between a Josephson junction and an electrostatic
Wannier based qubit. In this consideration, we ex-
clude the role of electron spin that becomes im-
portant in mK regime, while charged based qubits
shall be operational at 4 K. The minimum and nec-
essary condition for qubit operation is the partial
occupation of two energy levels of quantum dots.
This induces oscillations of states occupancies, with
the frequency proportional to the energy difference
between two energy levels.

The problem of placing electrons in the effec-
tive potential is easily solvable by the Schröedinger
equation. However, when one considers two or more
electrostatically interacting qubits, then integro-
differential equations emerge that are not solvable
by analytical methods. Electron movement be-
tween two quantum dots is represented by the tight-
binding approach which essentially describes en-
ergy flow between neighbouring quantum dots and
energy localized in each quantum dot. This sim-
plistic approach is quite powerful and will be con-
ducted in the presented paper. It allows to cap-
ture the essence of the electrostatic entanglement
between coupled position-based qubits. The tight-
binding model can be used furthermore in the con-
text of Bogoliubov–de Gennes equations describing
the Andreev bound states (ABS) — the essence of
the Josephson effect. In fact, the Andreev bound

state of a Josephson junction is being modified by
the presence of position-based qubit implemented
in semiconductor. Such a modification of the An-
dreev bound state by a single electron in a Wan-
nier semiconductor qubit (position-based qubit) is
the subject of this work. It has its scientific,
technological and didactic value, while the results
might be important for the creation of a hybrid
semiconductor-superconducting quantum computer
(hybrid semiconductor-superconducting quantum
chip) and for quantum information processing
in such structures.

2. Description of position-based qubit
in tight-binding model

In order to refer to the physical situation, we con-
sider a position-based qubit in the tight-binding
model [5]. The Hamiltonian is given as

Ĥ(t) =

(
Ep1(t) ts12(t)

t†s12(t) Ep2(t)

)
[x=(x1,x2)]

= (1)

(
E1(t) |E1〉t 〈E1|t +E2(t) |E2〉 〈E2|

)
[E=(E1,E2)]

.

and describes the system which consists of two
coupled quantum wells as depicted in Fig. 2.
In such a situation, we deal with real-valued
functions Ep1(t), Ep2(t) and complex-valued
functions ts12(t) = ts(t) = tsr(t) + itsi(t), where
ts21(t) = t∗s12(t). It is equivalent to the knowl-
edge of four real valued time-dependent continu-
ous or discontinues functions Ep1(t), Ep2(t), tsr(t)
and tsi(t).

The system eigenenergies E1(t) and E2(t), where
E2(t) > E1(t), ∆Ep = Ep2 − Ep1, can be written as

E1(t) =
Ep1(t) + Ep2(t)−

√
∆E2

p(t) + 4|ts12(t)|2

2
,

E2(t) =
Ep1(t) + Ep2(t) +

√
∆E2

p(t) + 4|ts12(t)|2

2
(2)

and the corresponding eigenstates |E1(t)〉 and
|E2(t)〉 in the form of

|E1, t〉 =

∆Ep(t) +
√

∆E2
p(t) + 4|ts12(t)|2

− it12(t)
,−1

T

|E2, t〉 =

−∆Ep(t) +
√

∆E2
p(t) + 4|ts12(t)|2

t∗12(t)
, 1

T
(3)

The quantum state is a superposition of a state
localized at node 1 and 2 and therefore is given as
|ψ〉[x] = α(t) |1, 0〉x + β(t) |0, 1〉x =

α(t)

[
1

0

]
+ β(t)

[
0

1

]
, (4)
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where |α(t)|2 (|β(t)|2) is the probability of finding
a particle at node 1 (2), respectively. The condi-
tion |α(t)|2 + |β(t)|2 = 1 is fulfilled and obviously
〈1, 0| |1, 0〉x = 1 = 〈0, 1| |0, 1〉x and 〈1, 0| |0, 1〉x =
0 = 〈0, 1| |1, 0〉x. In the Schrödinger formalism,
both states |1, 0〉x and |0, 1〉x are Wannier functions
parametrized by position x.

The quantum state of the system evolves
according to

i~
d

dt
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 = E(t) |ψ(t)〉 . (5)

The general analytic form, being the solution of (5),
can be expressed as

|ψ(t)〉 = exp

 1

i~

t∫
t0

Ĥ(t1)dt1

 |ψ(t0)〉 =

exp

 1

i~

t∫
t0

Ĥ(t1)dt1

[ α(0)

β(0)

]
(6)

and the density matrix for this state is as follows
ρ̂(t) = ρ̂†(t) = |ψ(t)〉 〈ψ(t)| =

Û(t, t0)ρ̂(t0)Û(t, t0)−1 =

exp

(
1

i~

t∫
t0

Ĥ(t1)dt1

)
(|ψ(t0)〉 〈ψ(t0)|)

× exp

(
− 1

i~

t∫
t0

Ĥ(t1)dt1

)
=

Û(t, t0)

(
|α(0)|2 α(0)β∗(0)

β(0)α(0)∗ |β(0)|2

)
Û(t, t0)†.

(7)
The initial state is |ψ(t0)〉 = [α∗(0), β∗(0)]

T .

3. Electrostatic interaction
of Josephson junction qubit

with semiconductor electrostatic qubit

The state of the Josephson junction is well de-
scribed by the Bogoliubov–de Gennes (BdGe) equa-
tion [9] pointing to the correlation between the elec-
tron (e) and holes (h) as(

H0 ∆(x)

∆(x)∗ −H†0

)[
un(x)

vn(x)

]
= En

[
un(x)

vn(x)

]
, (8)

where H0 = − ~2

2m
d2

dx2 is the free electron Hamilto-
nian with the self-consistency relation

∆(x) =
∑
n

(
1− 2f(En)

)
un(x)vn(x)∗. (9)

Here, ∆(x) is the superconducting order pa-
rameter, f(En) = [1 + exp (−En/kBT )]

−1 is
the Fermi–Dirac distribution function and un(x)
and vn(x) are electron and hole wavefunctions.
In the case of a bulk superconductor with a con-
stant superconducting order parameter, we ob-
tain En = ±

√
|H0|2 + |∆|2. In later considerations,

Fig. 2. Electrostatic position-based qubit imple-
mented in CMOS technology [4]. Upper: simplis-
tic representation by a particle localized in two re-
gions of space denoted by nodes (1) and (2). Lower:
case of two electrostatically interacting qubits im-
plementing a quantum swap gate. Quantum dy-
namics are parameterized by the presence of elec-
trons at nodes 1, 2, 1’ and 2’.

we will omit the self-consistency relation assum-
ing that the superconducting order parameter is
as a step-like function. It should be underlined
that the BdGe equation is the mean field equa-
tion derived from the BCS theory of supercon-
ductivity and naturally it is valid for the case of
many particles. A semiconductor single electron
line with two nodes can be considered as an elec-
trostatic position-dependent qubit and described
with Hsemi = ts12 |1〉 〈2|+ ts21 |2〉 〈1|+ Ep1 |1〉 〈1|+
Ep2 |2〉 〈2|.

We refer to the physical situation depicted
in Fig. 3. We can express the coupling of two
systems assuming four nodes for the electron
or hole and two nodes for the electron confined
in a semiconductor. Thus, each eigenvector
has 16 components (|0〉e |1〉s, |0〉e |2〉s,|1〉e |1〉s,
|1〉e |2〉s,|2〉e |1〉s, |2〉e |2〉s, |3〉e |1〉s , |2〉e |2〉s),
(|0〉h |1〉s, |0〉h |2〉s,|1〉h |1〉s, |1〉h |2〉s,|2〉h |1〉s,
|2〉h |2〉s, |3〉h |1〉s, |2〉h |2〉s), where s refers to
the semiconductor qubit whose quantum state
is a superposition of |1〉s and |2〉s. The states
|0〉e , . . . , |3〉e, |0〉h , . . . , |3〉h characterize the state of
the electron and hole, respectively, in the Andreev
bound state of the Josephson junction. It should
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Fig. 3. Superconducting Josephson junction in-
teracting with the semiconductor position-based
qubit in the minimalistic tight-binding approach,
where the tight-binding BdGe equation describ-
ing the Josephson junction is coupled electrostat-
ically to the tight-binding model of semiconductor
position-based qubit.

be understood as (i) when the electron moving in
the normal (non-superconducting) region between
superconductors is reflected as a hole, and (ii) when
it comes into the superconducting area and when
a hole moving in the normal region is reflected as
an electron when it meets a superconductor, etc.

In our case, the quantum state of the system can
be written as
|ψ, t〉 = γ1(t) |0〉e |1〉s +γ2(t) |0〉e |2〉s

+γ3(t) |1〉e |1〉s +γ4(t) |1〉e |2〉s +γ5(t) |2〉e |1〉s

+γ6(t) |2〉e |2〉s +γ7(t) |2〉e |1〉s +γ8(t) |2〉e |2〉s

+γ9(t) |0〉h |1〉s +γ10(t) |0〉h |2〉s +γ11(t) |1〉h |1〉s

+γ12(t) |1〉h |2〉s +γ13(t) |2〉h |1〉s +γ14(t) |2〉h |2〉s

+γ15(t) |2〉e |1〉s +γ16(t) |2〉h |2〉s . (10)
The normalization condition implies |γ1(t)|2 +

|γ2(t)|2 + · · · + |γ16(t)|2 = 1 for each time t. Such
a system has 16 eigenenergies. The probability
of finding an electron at node 1 under any pres-
ence of the electron in a semiconductor qubit at
node 1 or 2 is determined by applying projection
|(〈1|e 〈1|s + 〈1|e 〈2|s) |ψ, t〉 |2. As a result, we ob-
tain the structures of matrices corresponding to
the H0 part of the BdGe equation for A = {e, h}
in the general form

Ĥ0[A] = Ep2Î8×8

+



−∆Ep+EA0 ts tA(1,0) 0 tA(2,0) 0 tA(3,0) 0

t∗s EA0 0 tA(1,0) 0 tA(2,0) 0 tA(3,0)

t∗A(1,0) 0 −∆Ep+EA1+ εAq
2

a ts tA(2,1) 0 tA(3,1) 0

0 t∗A(1,0) t∗s EA1+ εAq
2

b 0 tA(2,1) 0 tA(3,1)

t∗A(2,0) 0 t∗A(2,1) 0 −∆Ep+EA2+ εAq
2

b ts tA(3,2) 0

0 t∗A(2,0) 0 t∗A(2,1) t∗s EA2+ εAq
2

a 0 tA(3,2)

t∗A(3,0) 0 t∗A(3,1) 0 t∗A(3,2) 0 −∆Ep+E3A ts

0 t∗A(3,0) 0 t∗A(3,1) 0 t∗A(3,2) t∗s E3A


.

Parameters Ep1, Ep2 (with ∆E = Ep2 − Ep1)
correspond to semiconductor position-based qubits
which are coupled with ts, while the respec-
tive distance between semiconductor qubits and
the Josephson junction is a and b. Parameter EAk
denotes the localized energy of A = {electron, hole}
at the Josephson junction node k = 0, . . . , 3. In
turn, εA = −1 if A = hole, or εA = 1 if A = electron,
what implies tA(k,l) = −t∗B(k,l) and EAk = −EBk.

Hence, we obtain the form of Ĥ0[h] which is
analogous to the form of Ĥ(0[e]) and, in addi-
tion, two other matrices ∆̂1, ∆̂2 = ∆̂†1, where
∆̂1 = diag(∆(0),∆(0), ∆(1),∆(1), ∆(2),∆(2),
∆(3),∆(3)). The final structure of the tight-
binding Bogoliubov–de Gennes equations includ-
ing the interaction of the semiconductor qubit with
the Josephson junction in the minimalistic way can
be described as

Ĥeff =

(
Ĥ0[e] ∆̂1

∆̂2 Ĥ0[h]

)
. (12)

Similarly as before, we will use the knowl-
edge on quantum state at t0. We can evalu-
ate the state by computing its time dependence
exp

(∫ t
t0

1
i~Ĥext(t)dt′

)
|ψ, t0〉 = |ψ, t〉. In fact, it is

based on the method already presented in (8).
Moreover, we can perform the procedure of heat-
ing up or cooling down of the quantum state in
the way as it was described before or we can regu-
late the population of pointed energetic level(s).

In order to work with the most minimalistic tight-
binding model of the Josephson junction of Sc–I–Sc
(Superconductor–Insulator–Superconductor) we set
∆(1) = ∆(2) = 0 what corresponds to the sim-
plest form of the Andreev bound state in the tun-
neling Josephson junction. However, in weak-links
and in the field-induced Josephson junctions, all
diagonal elements are non-zero and |∆| has max-
imum at ∆(0) and ∆(3) which can be considered as
a superconducting state of bulk superconductors.
Quite naturally, the field-induced Josephson junc-
tion [9] can have a special profile of dependence
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of superconducting order parameter ∆(x) on posi-
tion x with the presence of built-in magnetic fields
in the area of junction. It will also have spe-
cial complex-valued hopping constants for the elec-
tron and hole in the area of the superconductor
that will incorporate the profile of magnetic field
present across the Josephson junction. The speci-
fied Hamiltonian describing the electrostatic inter-
face between the superconducting Josephson junc-
tion and the semiconductor position-based qubit
consists of many parameters. They can be char-
acterized as (i) parameters describing the state of
the position-based semiconductor qubit Ep1, Ep2,
ts = tsr + itis (four real valued time dependent
functions) and (ii) parameters EAk, ∆(k), tA(k,k±1)

(where A = {e, h} and k = 0, . . . , 3) describing
the state of the Josephson junction (JJ) as well
as (iii) geometrical parameters describing the elec-
trostatic interaction between the semiconductor JJ
and the semiconductor qubit by distance a and b.
It is worth mentioning that electrostatic interaction
we take into account occurs only between nodes
1-1s, 1-2s, 2-1s, 2-2s, meaning four channels for
Coulomb interaction. This assumption greatly sim-
plifies the model so one can find analytical solu-
tions as well. The assumption with four chan-
nels of electrostatic interaction is physically justi-
fiable if one assumes that ∆(0) 6= 0, ∆(3) 6= 0
and (∆(1),∆(2)) → 0. Formally, we have omit-
ted the channels of electrostatic interaction as 0-1s,
3-1s, 0-2s, 3-2s. It is commonly known that the su-
perconducting state, especially with strong super-
conductivity as in the case of a bulk supercon-
ductor, is not supporting and shielding itself from
the external and internal electrostatic field of cer-
tain strength as it naturally protects its ground
superconducting macroscopic state.

Having established the mathematical structure
describing the electrostatic interaction between
the semiconductor position-based qubit and
the Josephson junction, we can proceed to an-
alytical and numerical calculations. The first
simplification is that ∆(1) = ∆(2) = 0 and
∆ = ∆(0) = ∆(3) ∈ R. It means that there is no
net electric current flowing via the Josephson
junction since the electric current flow imposes
the condition of phase difference among supercon-
ducting order parameter ∆(0) and ∆(3) and in
such a case the superconducting order parameter
is a complex valued scalar. Also, it implies that
there is no magnetic field in our system since
magnetic field brings a phase imprint between
∆(0) and ∆(3). The second simplification is
that Ep1 = Ep2 = Ep, ts ∈ R. The third simpli-
fication is that for each node k = 0, 1, . . . 3 one
has Eek = V = −Ehk and indicates there is an
electron-hole symmetry in the area of ABS, that
is in the middle of the Josephson junction. In
such a way all hole eigenenergies are corresponding
to electron eigenenergies with ’−’ sign. The last
assumption is that the electron or hole hopping in

Fig. 4. Eigenenergies of semiconductor qubit cou-
pled to Josephson junction in dependence on dis-
tance in tight-binding minimalitic approach.

Fig. 5. Eigenenergies of the semiconductor qubit
coupled to the Josephson junction in dependence
on the superconducting order parameter in a mini-
malitic approach.

the area of ABS in between the nearest neighbours
is such that te(k,k+1) 6= 0 and th(k,k+1) 6= 0 and
is 0 otherwise. One can name such a feature of
transport in the Josephson junction as diffusive and
not ballistic which brings the mathematical simpli-
fications. Establishing these facts we can move into
analytical and numerical calculations. Hamiltonian
of the physical system has a structure that allows
analytic determination of all eigenenergies since
the Hamiltonian matrix has many symmetries.
In particular, we can obtain the spectrum of
eigenenergies in dependence on the distance d as
depicted in Fig. 4 and also the spectrum of eigenen-
ergies in dependence on the superconducting order
parameter, as seen in Fig. 5.

It is possible to observe the swap of the ground
and excited state in the system of the interacting
Josephson junction with the semiconductor qubit
what implies the existence of the topological phase
transition as depicted in Figs. 4–6. Because of
that, such a system could be interesting for quan-
tum information processing both in the classical
quantum ways and with the use of topological
states of matter. Topological states of matter can
be controlled by tuning the superconducting or-
der parameter strength with the use of external
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Fig. 6. Different eigenenergies as functions of
kinetic energies.

magnetic field or by using an array of semicon-
ductor quantum dots where the distance between
a single electron (distributed in a wavepacket) and
the Josephson junctions can be changed [10] with
the use of electric control acting on the state of
a semiconductor qubit.

One of the most interesting features observed in
the BdGe tight-binding model is the landscape tun-
ing of eigenenergies by the application of small volt-
age (below the size 2e∆) to a non-superconducting
region of the Josephson junction. In a very real way,
the control of this voltage is the control of the chem-
ical potential in the Josephson junction.

In such a case one obtains various features as
described in Figs. 6–8. In the described consider-
ations, the spin degree-of-freedom was omitted in
the case of the Josephson junction as well as in
the case of the semiconductor position-based qubit.
However, they could be easily included but it would
increase the size of the matrix describing the inter-
action between the superconductor Josephson junc-
tion and the semiconductor electrostatic qubit from
16 × 16 to the size 8 × 4 = 32. Thus, one ob-
tains the matrix 32 × 32. Adding a strong spin-
orbit interaction to the Hamiltonian of the Joseph-
son junction under the presence of magnetic field
allows to describe the topological Josephson junc-
tion. In such a way we can obtain the effec-
tive Hamiltonian 32 × 32 for the interaction be-
tween the semiconductor position-based qubit and
the topological Josephson junction in the most
minimalistic way.

It should also be underlined that so far we have
used the BdGe formalism which is suitable for
the mean field theory domain. However, in our
case we have considered very special interactions be-
tween individual electrons, holes present in the area
of the Josephson junction and the specific indi-
vidual electron present in the area of the semi-
conductor qubit. The use of the BdGe formal-
ism is therefore the first level of possible approx-
imation and a further more detailed study can
be attempted to determine microscopic processes
present in the interaction of the Josephson junc-
tion with the semiconductor qubit. It is sufficient

Fig. 7. Tunnning the spectrum of eigenenergies in
electrostatic qubit interacting with the Josephson
junction while we are changing the chemical poten-
tial of the insulator region in the Josephson junc-
tion at all nodes 0, 1, 2 and 3 at the same time.

to mention that in our case superconductors shall
have a relatively small size so we are dealing with
a relatively small number of electrons and holes in
the non-superconducting area.

More detailed considerations are, however, be-
yond the scope of this work and require the density
functional theory (DFT) methods, etc.

The effective tight-binding Bogoliubov–de
Gennes matrix which takes into account the interac-
tion of the semiconductor qubit with the Josephson
junction can be at least diagonalized. As a result,
two groups of eigenvectors can be distinguished.
To show the solutions, the writing convention
should be adjusted to make it sufficiently readable.
Let us introduce: ∆Ec = Ec2 − Ec1, Σt = tj + ts,
δt = tj − ts and with their help we express the en-
ergy eigenvalues. They are

E1 = −
√

(∆Ec)2 + (2δt)2 + Ec1 + Ec2
2

+ Ep − V,

E2 =

√
(∆Ec)2 + (2δt)2 + Ec1 + Ec2

2
+ Ep − V

E3 = −
√

(∆Ec)2 + (2Σt)2 + Ec1 + Ec2
2

+ Ep − V

E4 =

√
(∆Ec)2 + (2Σt)2 −∆Ec

2
+ Ep − V

E5 =
−
√

(∆Ec)2 + (2δt)2 + Ec1 + Ec2
2

+ Ep + V,

E6 =

√
(∆Ec)2 + (2δt)2 + Ec1 + Ec2

2
+ Ep + V,

E7 =
−
√

(∆Ec)2 + (2Σt)2 + Ec1 + Ec2
2

+ Ep + V,

E8 =

√
(∆Ec)2 + (2Σt)2 + Ec1 + Ec2

2
+ Ep + V,

(13)
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In turn, the corresponding eigenvectors are
|ψ〉1 = |ψ〉2 = |ψ〉3 = |ψ〉4 =

0

0

−1

c1,4
c1,4
1

0

0

0

0

0

0

0

0

0

0





0

0

0

0

0

0

0

0

0

0

1

c1,4
c1,4
1

0

0





0

0

1

c3,4
c3,4
1

0

0

0

0

0

0

0

0

0

0





0

0

0

0

0

0

0

0

0

0

−1

c3,4
−c3,4
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(14)

where
c1,4 = c2,12 = c1,5 = c2,13 =

− 2δt√
(∆Ec)2 + (2δt)2 + ∆Ec

,

c3,4 = c3,5 = c4,12 = −c4,13 =

− 2Σt√
(∆Ec)2 + (2Σt)2 + ∆Ec

, (15)

and
|ψ〉5 = |ψ〉6 = |ψ〉7 = |ψ〉8 =
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0
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(16)

where
c6,4 = −c6,5 = c5,12 = c5,13 =

2δt√
(∆Ec)2 + (2δt)2 −∆Ec

,

c8,4 = c8,5 = c7,12 = −c7,13 =

2Σt√
(∆Ec)2 + (2Σt)2 −∆Ec

. (17)

Fig. 8. Different eigenenergies as functions of
tuning voltages.

The coefficients cr,p should be read as the r-th
eigenvector with p — position in the r eigenvector.

We recognize that states |ψ1〉 , . . . , |ψ8〉 are en-
tangled due to non-zero Coulomb interaction be-
tween the semiconductor position-based qubit and
the Josephson junction superconducting qubit.
However, other states are not entangled and are
given as a tensor product of two non-interacting
quantum systems (which is equivalent to the semi-
conductor qubit and superconducting qubit at suf-
ficiently high distances) and which is also re-
flected in the lack of dependence of eigenenergies on
the Coulomb energy. A quick evaluation of energies
involved in the BdGe tight-binding model is made
in Table I. For the sake of comparison, the length of
the Josephson junction was assumed to be 100 nm
(smaller than the superconducting coherence length
for most low temperature BCS superconductors)
and the size of the position-based qubit was as-
sumed to be 100 nm too (the most recent technolo-
gies allow for the reduction of this size to 3 nm).

From the brief analysis conducted in Table I
it can be concluded that it is desirable to use long
Josephson junctions that are in close proximity to
a semiconductor qubit to ensure that the energy
of kinetic excitations can be as small as possible
and hence the Coulomb interaction will become
a stronger tuning factor. Using strong supercon-
ductors would compensate the electrostatic qubit-
qubit interaction and thus it is not desirable and,
consequently, one shall stick to the BCS supercon-
ductors. Operational temperature shall be kept
in the mK regime.

We continue the analysis of energy eigenstates
of the semiconductor qubit-Josephson junction
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TABLE IScaling of tight-binding model parameters with geometry of interface between semiconductor
quantum dot qubit and Josephson junction qubit in symmetric case.

BdGe
parameter

Mathematical formula
Physical value

(∆x = d = 100 nm, n = m = 1)

tj
~2(2n+1)

2me,sc

(
2π

dsemi−qbit

)2

= ~2(2n+1)
2me,sc

(
2π
∆x

)2
3× 5.938 meV = 17.814 meV

ts
~2(2k+1)
2me,semi

(
2π
dJJ

)2

= ~2(2k+1)
2me,semi

(
2π
∆x

)2
3× 5.938 meV = 17.814 meV

Ec1
q2

a
= 1

4πε0

q2

d
= e2

4πε0∆x
0.145 meV

Ec2
q2

b
= 1

4πε0

q2√
d2+(2∆x)2

= e2

4
√

5πε0∆x
0.0659 meV

system. The remaining states form a group of non-
entangled eigenstates |ψ9〉 , . . . , |ψ16〉. To present
them explicitly we use the following expression:
ξ± = [V ±

√
(∆2 + V 2)]/∆. The eigenstates

are thus
|ψ〉9 = |ψ〉10 = |ψ〉11 = |ψ〉12 =

0
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−e iφ2ξ−
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0

0

0

1

1





e iφ1ξ−
e iφ1ξ−

0

0

0

0

0

0

1

1

0

0

0

0

0

0


|ψ〉13 = |ψ〉14 = |ψ〉15 = |ψ〉16 =

0

0

0

0

0

0

−e iφ2ξ+
e iφ2ξ+

0

0

0

0

0

0
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0
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0

0

0
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0

0

0

0

0

0





0

0

0

0

0

0

e iφ2ξ+
e iφ2ξ+

0

0

0

0

0

0

1

1





e iφ1ξ+
e iφ1ξ+

0

0

0

0

0

0

1

1

0

0

0

0

0

0


(18)

Of course, some eigenvalues are degenerate:

E9 = E10 = −
√

∆2 + V 2 + Ep − ts,

E11 = E12 = −
√
∆2 + V 2 + Ep + ts,

E13 = E14 =
√
∆2 + V 2 + Ep − ts

E15 = E16 =
√
∆2 + V 2 + Ep + ts (19)

Conducted considerations can be extended further
with the introduction of a noise model for Wannier
semiconductor qubits as presented in [11].

5. Conclusions

This work describes the elementary but still
meaningful model of electrostatic interface between
the electrostatic position-based qubit implemented
in coupled semiconductor quantum dots (as present
in CMOS technology) coupled to the Josephson
junction qubit. The emergence of the electrostatic
entanglement was shown which is the example of
an interface between a superconducting quantum
computer and a semiconductor quantum computer.

The obtained results are meaningful for the de-
velopment of single-electron electrostatic quantum
neural networks, quantum gates, such as CNOT,
SWAP, Toffoli and Fredkin gates as well as any
other types of quantum gates with N inputs and
M outputs. Single-electron semiconductor devices
can be attractive from the point of view of power
consumption and they can approach similar per-
formance as Rapid Single Quantum Flux supercon-
ducting circuits [4] having much smaller dimensions
than the superconducting circuits. In the conducted
computations, the spin degree-of-freedom was ne-
glected. However, it can be added in a straight-
forward way doubling the size of a Hilbert space.
The obtained results allow us to obtain the en-
tanglement of qubit A (for example) using bipar-
ticle Von Neumann entropy S(t)A of qubit A in
two electrostatically interacting qubits with time
as given by

S(t) = −Tr [ρ̂A(t) (log(ρ̂A(t)))] , (20)
where Tr[ ] is the matrix trace operator and ρ̂A is
the reduced density matrix of A qubit after the pres-
ence of B qubit was traced out. The obtained re-
sults can be mapped to the Schrödinger formal-
ism [12] in order to obtain higher accuracy and
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resolution in the description of quantum state dy-
namics. One can use the obtained results in the
determination of quantum transport in the single
electron devices or arbitrary topology which can be
helpful in optimization of device functionality and
controlling sequences shaping the electron confine-
ment potential. Topological phase transitions, as
described by [13–15], are expected to take place in
arrays of coupled electrostatic qubits due to the sim-
ilarity of tight-binding applied in the semiconduc-
tor coupled quantum well model to the Josephson
model in Cooper pair box superconducting qubits.
All results are straightforward enough to be gener-
alized for electrons and holes confined in a net of
coupled quantum dots (which changes only the sign
of electrostatic energy so q2 → −q2) under the as-
sumption that recombination processes do not oc-
cur. What is more, the interaction between the elec-
trostatic position-based qubit and the Josephson
junction was formulated and solved in the tight-
binding model. In quite a straightforward way,
one obtains the electrostatically coupled networks of
graphs interacting with the single Josephson junc-
tion in an analytical way. It shall have its impor-
tance in the development of the interface between
a semiconductor CMOS quantum computer and
an already developed superconducting computer.
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