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We study ultracold quantum gases of alkaline-earth-like atoms loaded into three-dimensional state-
dependent optical lattice. In particular, we focus on the fermionic ytterbium-173 atoms due to their
unique properties, in particular, low-lying metastable excited e electronic state, decoupling of the nuclear
spin from the electronic degrees of freedom and different AC-polarizabilities of the ground g and e states.
This allows to realize the two-band Hubbard model and study its unique critical properties. The theoret-
ical analysis is performed in the region of applicability of the tight-binding approximation at different
lattice depths and different fillings by atoms in the g- and e-orbital states. By means of dynamical
mean-field theory, we analyze stability regions of the emerging ordered phases.
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ordering

1. Introduction

In recent years, the realization of universal quan-
tum simulators [1] by means of ultracold gases in
optical lattices becomes more and more consequen-
tial [2]. Among the inspiring examples, observa-
tions of long-range antiferromagnetic (AFM) corre-
lations of ultracold 6Li atoms [3] provide a fresh out-
look to the scientific community. Now, debates are
centered not only around additional cooling mech-
anisms but also around particular systems and fur-
ther physical regimes, where these simulators can be
successfully applied. In this respect, alkaline-earth-
like (AEL) atoms, in particular, fermionic isotopes
of Yb and Sr, demonstrate appropriate capabili-
ties [4, 5] to account for orbital degrees of freedom
vital in strongly-correlated solid-state materials.
The extension to the two-orbital Hubbard model
already uncovers layers of captivating physical phe-
nomena, ranging from the Kondo effect and orbital-
selective Mott transitions to ferromagnetism and
colossal magnetoresistance.

In this paper, we study orbital ordering in
the two-band Hubbard model (2BHM) including
Hund’s exchange coupling term which can be real-
ized in ultracold four-component mixtures of AEL
atoms in optical lattices. We employ dynami-
cal mean-field theory (DMFT) to estimate criti-
cal temperatures and stability regions at various

lattice depths. The paper is organized as follows:
we shortly introduce the model and the method
(Sec. 2). In Sect. 3, we present and discuss numer-
ical results and finally, we summarize our results
in Sect. 4.

2. Model and method

We describe the system with a Hamiltonian:

H =
∑
〈i,j〉γσ

tγ(c†iγσcjγσ + h.c.)−
∑
iγ

µγniγ

+
∑
iγ

Uγ
∑
σ<σ′

niγσniγσ′ + V
∑
iσ<σ′,
γ 6=γ′

niγσniγ′σ′

+(V − Vex)
∑
iσ,
γ<γ′

niγσniγ′σ

+Vex

∑
i,σ<σ′,
γ 6=γ′

c†iγσc
†
iγ′σ′ciγσ′ciγ′σ, (1)

where γ = {g, e} denotes the electronic state rep-
resenting the orbital, σ = {−I, . . . , I} is one of
the N = 2I + 1 nuclear Zeeman spin states (we re-
strict below to N = 2), c†iγσ (ciγσ) corresponds
to the creation (annihilation) operator of an atom
at the site i in the internal state |γσ〉, tγ is
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the hopping amplitude, µγ is the chemical potential,
niγσ = c†iγσciγσ and niα =

∑
σ niγσ. The intraor-

bital interaction is denoted as Uγ , while V and Vex
describe the on-site interorbital direct and exchange
interaction terms, respectively.

We perform a numerical analysis within DMFT
formalism. The main idea of the DMFT approach
is to map the quantum lattice problem with many
degrees of freedom onto a single site — the “im-
purity site” — coupled self-consistently to a non-
interacting bath. In contrast to the static mean-
field approach, the local dynamics of a DMFT ef-
fective problem is treated exactly. Hence, although
it is not an exact method, it provides both qual-
itatively and quantitatively reasonable estimates
which can be compared to experimental measure-
ments in quasi-2D and 3D systems (in this paper
we focus on the 3D case with the lattice coordi-
nation number z = 6). In the theoretical analy-
sis, the Hamiltonian (1) is mapped onto the An-
derson impurity model. The most challenging part
of the procedure is the impurity problem which
is treated by the exact diagonalization solver pre-
serving the SU(2) symmetry in the spin space [6].
The maximal number of effective bath orbitals
is limited by ns = 4 per each orbital and spin
component.

The DMFT self-consistency condition in terms
of Green’s functions Gγσ for homogeneous, includ-
ing ferromagnetic (FM) and normal (N), phases
in the presence of the magnetic field h takes
the form:

Gγσ(iωn) =

∫
Dγ(ε)dε

iωn + µ+ hσ − ε− Σγσ(iωn)
,

(2)
where Dγ(ε) is the density of states of noninter-
acting atoms in the orbital state γ, the fermionic
Matsubara frequency is denoted as ωn = (2n+1)πT
and Σγσ(i ωn) is the self-energy obtained by solv-
ing the impurity problem. The magnetization as
a function of the external field is given by:

m(h) =
1

β

∑
γ,n

e iωn0+
(
Gγ↑(iωn)−Gγ↓(iωn)

)
.

(3)
The ferromagnetic phase is signaled by a non-
zero spontaneous magnetization m0, where
m0 = limh→0m(h) 6= 0. The fits for magnetic
susceptibility χ can be written as:

m = m0 + χh, (4)
where m is the average magnetization, m0 is
the residual magnetization and χ is determined
from the slope of the magnetization line. The mag-
netic susceptibility diverges at the critical tem-
perature Tc. Thus, the temperatures below which
the FM phase is stable can be determined by
the Curie-Weiss fit:

χ =
c

T − Tc
, (5)

where c is the fitting parameter.

To detect two-sublattice ordering, e.g., AFM
or antiferroorbital AFO long-range correlations,
the DMFT self-consistency conditions are extended
to the following form:

Gγσα(iωn) =

∫
ζγσᾱDγ(ε)dε

ζγσAζγσB − ε2
(6)

with ζγσα ≡ iωn + µγ −Σγσα(iωn) and the sublat-
tice indices α = A,B and their opposites ᾱ = B,A.

3. Numerical results and discussion

For simplicity, we choose the state-dependent
optical lattice acting on ultracold 173Yb atoms
with the same amplitude in all three spatial di-
rections (cubic lattice geometry). Only the se-
lected results will be presented below, while find-
ings of an extended study, in particular, with more
experimentally-relevant quasi-2D lattice geometry
are given in Ref. [7]. The Hamiltonian (1) implies
a single-band approximation. Hence, we consider
the case of a sufficiently strong lattice potential in
all spatial directions s ≥ 3Er, where Er = ~2k2/2M
is the recoil energy and k is the wave number de-
termined by the wavelength λ of the laser forming
the isotropic cubic optical lattice.

To provide theoretical estimates of the Hub-
bard parameters entering the model (1), we employ
the band-structure analysis [8] with the knowledge
of the scattering lengths of atoms in different states,
the variable laser intensity and the fixed laser wave-
length λ = 670 nm with the corresponding ratio of
differential polarizabilities of atoms in g and e states
αe(ω)/αg(ω) ≈ 3.3 [9]. The intraorbital interaction
amplitudes are determined as Uγ = gγγ

∫
d3rw4

γ(r),
while V = (U+

eg + U−eg)/2 and Vex = (U+
eg − U−eg)/2.

Here gγγ′ = 4π~2aγγ′/M , where aγγ′ is the scatter-
ing length of two atoms on orbitals γ and γ′, M is
the atomic mass, wγ(r) is the Wannier function
on the orbital γ and U±eg = g±eg

∫
d3rw2

e(r)w2
g(r).

In the case under study, alat ' 6× 103a0 is the lat-
tice constant with a0 being the Bohr radius and
the scattering lengths are agg = 199a0, aee = 306a0,
a−eg = 220a0 and a+

eg ' 1900a0 [10, 11].
The dependencies of Hubbard parameters on

the lattice depth s are shown in Fig. 1. The ra-
tio te/tg can be tuned by adjusting the depth
of the optical lattice or by changing its wave-
length. As it can be seen from Fig. 1, the hier-
archy of the on-site interactions in ultracold AEL
atoms in state-dependent optical lattices is different
from the Coulomb-type parametrization employed
in strongly-correlated electron systems. Namely, for
the latter, the relation V = U − 2Vex is valid for all
electron-electron interactions which are rotationally
invariant in real space. However, the on-site in-
teraction amplitudes of 173Yb atoms in the system
under study demonstrate the hierarchy of the type
Ugg < Uee < Vex < V due to the relatively large
scattering length of the orbitally-symmetric state.

Next, we focus on one particular case of the total
filling n = 1.5, where, depending on the ratio ng/ne,
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Fig. 1. Hubbard parameters in units of the hop-
ping amplitude tg obtained from the band-structure
calculation as functions of the lattice depth s
in units of Er at the fixed laser wavelength
λ = 670 nm.

Fig. 2. Critical temperatures in units of tg as func-
tions of the lattice depth s in units of Er in the
regions of the AFO (a) and FM (b) instabilities.
The insets schematically indicate the average filling
of two adjacent lattice sites by orbital components
in the corresponding phases.

a formation of the AFO or FM phases at suffi-
ciently low temperatures is observed (see Fig. 2).
The AFO long-range ordering is characterized by
two spatially-alternating sublattices: one of them
consists mostly of sites occupied by a single atom
in the e state and the other is filled by pairs of
g atoms. Hence, the above-mentioned filling with
ng ≈ 1 and ne ≈ 0.5 can be viewed as the most ap-
propriate for the detection of the AFO correlations.

In Fig. 2a, we explore the influence of lattice
depth on the AFO ordering stability with respect
to thermal fluctuations. As it can be observed,
the critical temperature in units of tg for the AFO
phase increases linearly with the increase of the lat-
tice depth. For large lattice potentials, the hopping
becomes more suppressed and interactions become

Fig. 3. Density profiles as functions of the aver-
age chemical potential µ = (µg + µe)/2 in units of
tg. The highlighted areas indicate the stability re-
gions of the AFO and AFM phases with respect to
changes in the density of atoms.

stronger. Moreover, the Mott-insulator plateau is
revealed at n = 1.5 which is clearly visible in the de-
pendence of the total filling on the chemical poten-
tial (see Fig. 3). Hence, in this regime, the AFO
order becomes energetically favorable due to a spa-
tial separation of g atoms which have the smallest
interaction amplitude. It is worth mentioning that,
according to the DMFT analysis, the AFO also re-
mains stable substantially away from the plateau
with ng = 1 and ne = 0.5 (see the indicated region
in Fig. 3), while the maximum for the AFO critical
temperature is observed at n = 1.5.

From the point of view of experiments dealing
with ultracold atoms in optical lattices, the en-
tropy is an important thermodynamical quantity.
The calculations involving the local density approx-
imation in addition to DMFT (µ(r) = µ0 − Vtrr

2,
where Vtr is the trapping potential, r is the distance
from the trap center and µ0 is the chemical potential
in the center of the trap) provide us with expecta-
tion values of the local density n of atoms at differ-
ent values of the chemical potential. Given these
quantities at different temperatures, the entropy
per site can be obtained from the Maxwell relation,

S(µ0, T ) =

µ0∫
−∞

(
∂n

∂T

)
dµ. (7)

Now, using (7) at s = 4 and temperatures close
to Tc = 0.21tg (see Fig. 2a), n

(0)
g = 1 and n(0)

e = 0.5
in the trap center (see, e.g. Fig. 3 at µ ≈ 3.5),
we estimate the critical entropy per particle, i.e.,
S/N ≈ 0.885kB. This value is currently slightly
below the lower bound for entropies per parti-
cle accessed in experiments with 173Yb. How-
ever, the AFO phase has advantages in compar-
ison to the AFM phase in the Hubbard model,
both in the detection techniques and the critical
entropy values.
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Another interesting aspect of the analysis is
the FM phase stability. It is well known that in solid
state systems, Hund’s coupling plays a key role in
FM ordering and can be understood as a source of
ferromagnetism in transition-metal oxides [12–14].
As it was shown in [13] for the limit of the Ising-
type Hund’s coupling, ferromagnetism is stabilized
by the exchange interaction Vex. However, accord-
ing to the extended DMFT analysis [14], the more
symmetric parametrization of interactions in multi-
orbital Hubbard model can significantly affect criti-
cal properties. In particular, a strong suppression of
FM is observed when full spin-rotational symmetry
of the Coulomb interaction in the 2BHM is taken
into account.

In this study, we observe that for SU(2)-
symmetric interactions and their system-
specific AEL-atom-type parametrization, i.e.,
Ugg < Uee < Vex < V , the FM correlations can be
stabilized in a wide region of interactions and lattice
depths, see Fig. 2b. We also determine a critical
value of the lattice depth (s ≈ 4Er) below which
the FM correlations become suppressed at T > 0,
while the maximum for the Curie temperature
in units of tg is observed at s ≈ 6Er. At stronger
couplings, the critical temperature decreases slowly
with the increase of the lattice depth.

4. Summary

In this paper, we have theoretically studied low-
temperature properties of gases consisting of AEL
atoms loaded into state-dependent optical lattices,
recently realized in experiments. These systems
are currently of high relevance due to appropri-
ate capabilities to realize, in particular, the two-
band Hubbard model, the Kugel-Khomskii model,
the Kondo lattice model and SU(N )-symmetric
magnetic systems.

We have analyzed magnetic and orbital proper-
ties of the two-orbital Hubbard model on the sim-
ple cubic lattice. It is shown that for the inter-
action parameters related to the experiments with
fermionic 173Yb atoms, orbital and magnetic order-
ing can emerge at specific lattice fillings. We have
obtained temperature vs. lattice depth phase di-
agrams at n = 1.5 and analyzed the range of oc-
currence of the AFO and the FM long-range cor-
relations. We have estimated the critical entropy
per particle below which the AFO ordering be-
comes stable and concluded that, although the value
is low to detect this phase in the current exper-
imental setups with ultracold ytterbium atoms,
the AFO phase has advantages in comparison to
the AFM phase observed in the single-band Hub-
bard model. We have indicated differences between
the solid-state and the AEL-atom parametriza-
tions of interactions in the 2BHM and shown that,
in the latter case, ferromagnetism can be stabilized
for the SU(2)-symmetric parametrization of local
interactions.
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