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The plasma focus filaments are investigated in the simple plasma model with the London current.
The filament solutions depend on two main parameters — on the speed of filament motion (supersonic,
subsonic and zero) and the filament radius which is less or more than the London penetration depth.
The corrugation instability of rarefaction shock waves is studied in detail as the mechanism of the plasma
focus filament generation.
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1. Introduction

The plasma focus (PF) filaments are long-lived
structures (their lifetime can be of the order of
the discharge time [1]) and their diameter varies,
mainly in the submillimeter range [2]. These struc-
tures are detected in the amount from several units
to thousands in the PF discharges [3]. The filaments
are generated at an insulator, and then propagate
to the axis of a discharge chamber. At first, the rep-
resentation about stationary filaments had been de-
veloped [4]. Recently, solutions have been proposed
for the moving and stationary quasi-cylindrical fila-
ments in the simple plasma model with the Lon-
don current [5–7]. Here, a subsonic solution for
submillimeter cylindrical structures is presented.
Its radius is smaller than the London penetration
depth. In addition, we discuss the mechanism
for the PF filament generation which is associated
with the corrugation instability of rarefaction shock
waves (RSWs) [8, 9]. The reproducibility of emis-
sion characteristics may be improved and the in-
tensity of PF radiation may increase if we induce
filaments with metal inserts at the insulator.

2. Main relations

The basis of the developed theory consists of
the dissipationless equations of two-fluid plasma hy-
drodynamics which result from the variational prin-
ciple [10]. These equations were used, for example,
in the theory of superconductivity by London [11] in
which the relation for the London current j has been
established, j = −e2neA/mec, where ne is the elec-
tron concentration and A is the vector potential.
If the plasma hydrodynamic velocity is much less
than the current velocity, one can proceed from

the equations of two-fluid plasma hydrodynamics
to the one-fluid model of quasi-neutral fully ion-
ized plasma called the simple plasma model with
the London current

∂ρ

∂t
+∇ (ρv) = 0,

∂v

∂t
+ (v · ∇)v = −∇P

ρ
− ∂v

2memic2
∇A2,

∇×∇×A = − 4πZe2

memic2
ρA, (1)

where Ze andmi are the ion charge and mass, me is
the electron mass, c is the speed of light in a vacuum
and v is the plasma velocity. The plasma pressure
P is a function of density ρ. From the last equation
of the system it follows that div (ρA) = 0. Hence
for A⊥∇ρ we obtain the Coulomb gauge for A.
We shall use the equations of plasma hydrodynam-
ics when the characteristic scale of inhomogeneity of
plasma and field is determined by the London pen-
etration depth L = c/ωp, where ωp is the electron
plasma frequency.

3. Cylindrical filaments

The ratio of the diameter of a filament to its
length is a small parameter that enables us to
consider the filaments as quasi-cylindrical struc-
tures (or as cylindrical structures in the zero ap-
proximation with respect to the small parame-
ter). We assume that the plasma is adiabatic, i.e.,
P = P0(ρ/ρ0)

5/3, where P0 and ρ0 are the plasma
density and pressure around a filament, respec-
tively. Here, filaments are considered as cylin-
drical structures that can move at a constant
speed D perpendicular to the axis of the filament.
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Then, the system is reduced to two equations for
two independent variables ρ and Az, where Az is
the component of the vector potential in cylindrical
coordinates.

We proceed with dimensionless variables:
ρ/ρ0 → ρ, ωp0r/c→ τ , D/vs0 → D, and
Ze2A2

z/2memic
2v2s0 → a2, where r is the cylindrical

coordinate and ωp0 and vs0 are the electron plasma
frequency and the sound velocity in the plasma
around the filament, respectively. Subsequently,
Eqs. (1) take the following form:

d

τ dτ

(
τ
da

dτ

)
= ρa,

a2 =
D2

2

(
1− 1

ρ2

)
+

3

2

(
1− ρ 2

3

)
. (2)

We seek a solution of the system (2) containing
the tangential discontinuity. Note that for a mov-
ing cylindrical structure, there is a plasma flow
through the tangential discontinuity.

Therefore, in this case one can use the approx-
imate relation P + B2/8π ≈ constant, provided
that the plasma flow is small through a discon-
tinuity B = ∇ × A. We introduce the coordi-
nate τ∗∗ to indicate the location of the tangential
discontinuity. For τ < τ∗∗ in the solution for cylin-
drical structure, there is only a plasma pressure,
since the magnetic field vanishes. We also introduce
the coordinate τ∗ (τ∗∗ < τ∗) to denote the disconti-
nuity where the magnetic field reverses its direction.
In this case, all other quantities remain continuous,
for example, the plasma density ρ∗ = ρ(τ∗). For di-
mensionless parameters, the condition for the small-
ness of the plasma flow through the tangential dis-
continuity takes the form of Dρ−1

∗∗ � 1, where ρ∗∗ is
the plasma density on the inner side of the discon-
tinuity. The solutions are determined by the speed
of movement of the filament D, the discontinu-
ity position τ∗, where the magnetic field changes
its direction abruptly, and the density ρ∗ at this
discontinuity. The solutions are rated in the or-
der of two main parameters — on D (supersonic,
subsonic and zero) and filament radius τ∗ (less or
more than L). Incidentally, independently of a re-
gion where a solution is obtained (in any case of
the six above regions), the forward discharge cur-
rents are flowing on the tangential discontinuity
surface within the filament structure and the in-
verse induced currents are around the forward cur-
rent. The induced currents magnetic field compen-
sates the forward current magnetic field because
the plasma with the London current is a perfect
diamagnetic material.

Further, we demonstrate the subsonic solution
(D < 1) with τ∗ < L (see Figs. 1 and 2). All other
cases have been submitted previously [6–8]. Here,
we also show the images of moving and stationary
submillimeter filaments of PF which have been ob-
tained early in our laboratory by means of the image
converter [12] (see Fig. 3). Figure 3 displays typical

Fig. 1. The distribution of the plasma density
along the radius in the filament.

Fig. 2. The distribution of the magnetic field
along the radius in the filament.

Fig. 3. Filamentation of the current sheath at dif-
ferent stages of the PF discharge.

discharge photos taken from the end of PF at dif-
ferent times near the instant at which a peculiarity
in the current signal appears.

4. Corrugation instability of RSW

The simple model solution for RSW [10] is
the current flowing over the discontinuity surface
which propagates towards plasma with a higher
density. This current generates a magnetic field
on both sides of the discontinuity, with a larger
magnetic field generated on the side with a higher
plasma density. The magnetic field, in turn, in-
duces reverse London currents on both sides of the
gap. RSWs are supersonic as well as compression
shock waves.
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To study the instability of RSW, we pass to
the coordinate system that moves with the disconti-
nuity. We assume that the plasma moves perpendic-
ular to the discontinuity surface and study periodic
perturbations of a plane RSW with a wave vector k
perpendicular to the unit normal to the discontinu-
ity surface n. Below we consider the problem when
the vectors k and n are perpendicular to the current
flowing along the discontinuity surface (see Fig. 4).
Based on the symmetry of the problem, we write
the expression for the perturbation of the plasma
velocity in the form δv = δvtk/k, where δvt is the
tangential velocity perturbation. Let us also con-
sider perturbations of the vector potential a parallel
to the unperturbed value of the vector potential A
which, in turn, is parallel to the direction of the cur-
rent flowing along the discontinuity surface. Note
that the perturbation of an arbitrary parameter ψ of
the plasma or field is a plane wave which is conve-
niently written as ψ ∼ exp (− iωt+ i (k + κn) r),
where κ is the component of the wave vector along
the vector n. Further, from the linearized sys-
tem (1) we obtain the relation which connects ω,
k and κ on each side of the discontinuity

(ω − vnκ)2 =[
v2S −

2U

ρ

1

1 + L2 (k2 + κ2)

] (
k2 + κ2

)
, (3)

where vn is the unperturbed plasma velocity nor-
mal to the discontinuity surface and U = 2πj2/ω2

p

is the self-energy density of currents which are in-
duced on the discontinuity sides.

For the unperturbed values of the plasma and
field and for their perturbations on the sides of
the RSW, we obtain from the system (1) the re-
lation for the momentum flux continuity{

P + ρv2n +
B2

t

8π

}
= 0,{

δP + δρv2n +
Btbt
4π

}
= 0,{

ρvnδvt −
Btbn
4π

}
= 0. (4)

Braces denote the difference in parameter values
on the sides of the discontinuity. The indices t
and n denote the tangential and normal compo-
nents of the vectors. Here δP and δρ are pertur-
bations of pressure and plasma density and bn and
bt are the components of magnetic induction per-
turbation. We write the equation of motion from
the system (1) for perturbations of the plasma and
field as follows:

ρ
∂δvt
∂t

= − ∂

∂η

(
δP − Btδbt

4π

)
− ∂

∂ξ

(
ρvnδvt −

Btbn
4π

)
, (5)

where η = kr/k and ξ = nr are the coordinates
along the vectors k and n, respectively.

Fig. 4. The wave vector k, the normal to the plane
RSW n and the surface current density j∗.

After setting perturbations, (5) is reduced to
the following:

ωρδvt = k2
(
2v2S + v2n

) ρδvt
ω − κvn

. (6)

We define δvt through the displacement of
the plasma perturbation τ along the vector k as:

∂τ

∂t
+ vn

∂τ

∂ξ
= δvt, (7)

where τ ∼ exp (− iωt+ ikη + iκξ). Then, we ob-
tain from (6) the dispersion relation for the cor-
rugation instability of RSW in the following form:

ω (ω − κvn) ρ+ k2
(
7

3
ρv2n +

5

3
U

)
= 0. (8)

We study the case of a strong RSW when ρ1 � ρ2
and U1 � U2, where indices 1 and 2 denote the val-
ues on the discontinuity sides as well as U1 � ρ1v

2
1 ,

ρ2v
2
2 and |ω| � κ1v1. As a result, the dispersion

relation (8) will be as follows:

ω2ρ1 +
5

3
U1k

2 = 0. (9)

Then, for the increment of the corrugation instabil-
ity of a strong RSW, we write the expression

ν = k

√
5

3
U1ρ1. (10)

Now let us see that the inequality |ω| � κ1v1 is
valid for a strong RSW. From (3) for k ≈ ωp/c
we obtain that κ1 = ±2ωp/c. As a result, the con-
dition |ω| � κ1v1 can be transformed to the in-
equality U

1/2
1 � ρ

1/2
1 v1 which is performed for

a strong RSW.
The theory of the corrugation instability of

a strong plane RSW may be extended to the case
of a cylindrical RSW (see Fig. 5) taking into ac-
count that L � R and considering perturbations
with κ1L & 1. Here R is the radius of the cylin-
drical RSW determined by the radius of the in-
sulator. The generation of PF current filaments
is associated with the corrugation instability of
a strong cylindrical RSW. Moreover, the filament
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Fig. 5. The image of the PF chamber cross-
section.

formation period tF is determined by the corruga-
tion instability increment ν. An earlier evaluation
of the filament formation period [8] yielded a value
of tF < 100 ns.

In order to achieve the induced generation of PF
filaments, it is necessary to use metal inserts in
the places where the electrodes contact the insu-
lator [13]. In this case, the inserts must have a ser-
rated edge to stimulate the corrugation instability
with a given modulation scale that matches the size
of the teeth on the inserts. It is experimentally
possible to determine the optimal number of teeth
on the inserts which sets the number of PF fila-
ments. The optimal number of teeth for PF with
an insulator radius of 1 cm is expected to be about
100 or more [8].

5. Conclusions

The current filament generation mechanism in PF
associated with the development of the corrugation
instability of the strong RSW is presented. For this,
the simple plasma model with the London current
is used. In the same model, the structures of current

filaments are investigated. The induced filamen-
tation of the PF current sheath with the help of
special-shaped metal inserts is proposed.
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