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The electronic and optical properties of InAs spherical quantum dot (QD) at the center of a doped
n-type GaAs cylindrical nanowire were investigated by solving the Schrödinger and Poisson equations
self consistently. The effect of donor density of a cylinder and the size of QD on the allowed energy
levels, electrostatic potential, conduction bands and transition energy of the system were calculated.
The optical properties related to intra-band transitions in the conduction band of this structure were
studied through the compact density matrix approach. The results showed that the peak position and
magnitude of optical absorption coefficients, which are mainly located in the far infrared region, and
the refractive index changes were significantly affected by the incident optical intensity and the doping
concentration of the surrounding media
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1. Introduction

Based on semiconductor nanowire properties,
model devices and applications have been arranged
in the fields of electronics, photonics, mechanics
and sensors [1]. Single photon sources are one of
the main components of quantum photonic appli-
cations. These sources, which ideally emit a single
photon at a time, are highly efficient and can be in-
tegrated into photon circuits for the design of com-
plex quantum systems. Various systems have been
actively studied to obtain such resources, including
semiconductor quantum dots (QDs). The quantum
dots embedded in the III–V compound semiconduc-
tor nanowires perform relatively well and are flexi-
bly constructed and integrated [2]. The growth pro-
cesses of nanowires begin to be developed as the em-
bedded QD which provides a means for QDs to be
completely positioned [3, 4]. In addition, the em-
bedded QDs are often used to increase the emis-
sion and extraction of light in nanophotonic struc-
tures, for example with nanowires acting as pho-
tonic structures that enhance light extraction [5, 6].
The InAs QDs have a unique quantum efficiency
while growing in the GaAs matrix [7]. Changes in
multidimensional and multistructural QD parame-
ters have already been studied [8]. The effect of size
change on the work function of InAs quantum dots
grown on the GaAs matrix was studied experimen-
tally [9] and it was observed that the charge accu-
mulation is affected by the size of quantum dots.

Quantum dots can theoretically provide flexibility
of narrow or symmetrical emission spectra for opti-
cal applications. Furthermore, since the electronic
properties control many other features of dots, it
is vital to connect different optical spectroscopies
to the electronic characteristics of QDs. As ex-
pected, the transition energy of quantum dots is
negatively correlated with the volumetric size for
each geometry. Moreover, the spherical quantum
dots have significantly higher values of transition
energy than cubic quantum dots with the same real
space, because the spherical quantum dots have a
higher symmetry, which reinforces their quantum
confinement effects [10, 11].

Introducing impurity into the lattice allows quan-
tum dots’ electronic properties to be tailored and
customized to the engineering need. The wave func-
tions and energy levels depend on the amount and
location of impurities. However, the use of real de-
vices in electronics and photonics requires the ef-
fective and controlled doping of semiconductors to
modify their electrical, optical and magnetic prop-
erties [1]. In principle, it is possible to insert active
dopants into nanowires in two ways, namely doping
during the growth process and doping after growth
through ion diffusion or implantation [12]. Con-
sequently, it is necessary to carry out reliable and
controlled systematic doping studies of semiconduc-
tor nanowires, placing more emphasis on measuring
the type of doping and transport characteristics for
nanostructures in the future [13].
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The properties of GaAs/Ga1−xAlxAs heterojunc-
tion superlattice, in which only the Ga1−xAlxAs
layers are doped with Si impurities, were reported
in [14]. Next, the epitaxial growth was developed
to fabricate the successive controlled layers of differ-
ent semiconductors to gain high electrical mobility
and fast operation [15]. Further, a doped layer was
added to the desired structures during the epitaxial
growth of a layer, e.g. the effect of a magnetic field
on the electronic structure of a selectively doped sin-
gle quantum well of AlxGa1−xAs/GaAs was mea-
sured [16]. Afterwards, the electronic subband
structure in AlxGa1−xAs/GaAs superlattice was
calculated self consistently through the Schrödinger
and Poisson equations as suggested in [17], and
the effects of parameters such as the donor concen-
tration, well width and barrier width were investi-
gated. Finally, the electron dynamics in p-doped
self-assembled InGaAs/GaAs quantum dots at low
temperature and at room temperature were as-
sessed and the rise times of the structure were com-
pared with those of the undoped quantum dots [18].

West et al. [19] reported the experimental results
for inter-band transition between two of the low-
est levels (the ground and first excited states) of
doped GaAs quantum well. The change of dop-
ing concentration and electric field affect the confin-
ing potential, sub-band structure, optical transition
and nonlinear optical properties in a modulation
doped of GaAs/Ga1−xAlxAs double well [20–22].
The energy eigenvalues and the wave functions of
the three lowest levels (the ground and first two ex-
cited states) in a rectangular GaAs quantum dot in
the presence of donor impurity, adopting the quasi
one-dimensional effective potential model and effec-
tive mass approximation, were investigated. They
obtained electric fields to study the effects of these
parameters on the optical properties of the struc-
ture [23]. The electronic properties of asymmetric
double delta doped wells (GaAs) were calculated
by a self-consistent solution of Schrödinger-Poisson
equation to study the effects of the structure pa-
rameters on these properties and also the non-
linear second order transitions between the sub-
bands [24]. Elsewhere, the inter sub-band optical
transition in ultrathin InAs impurity layers, embed-
ded in the bulk InP semiconductors quantum well,
was reported [25]. Further, it was reported that
the optical properties are significantly affected by
quantum confinement [26, 27]. Likewise, the optical
properties such as absorption coefficients and refrac-
tive index changes of the excitonic transition 1s–1p
in the spherical quantum dot core/shell (AlN/GeN),
were studied [28]. Also, the linear and nonlinear
optical properties of a confined exciton in spher-
ical quantum dots (GaAs) and the effect of tem-
perature and pressure on these parameters were
investigated [29, 30]. The optical properties re-
lated to the inter-sub band optical transitions for di-
rect bandgap GeSn/Ge quantum dots are obtained
numerically by Baira et al. [31]. The effects of

important factors such as strength and doping po-
sition on linear and nonlinear optical properties of
the GaAS/AlGaAs multiple quantum well within
the effective mass approximation were also investi-
gated [32]. Moreover, the influence of bismuth and
doping type on the optical properties of n-type and
p-type GaAsBi/AlGaAs single quantum well het-
erostructures were investigated, the results of which
were compared with those of the n-type and p-type
GaAs/AlGaAs quantum well structures [33].

The electronic and optical properties of a spher-
ical quantum dot at the center of a cylindrical
nanowire system were investigated in [34, 35]. In
those papers a single-band and constant confining
potential were used in order to determine the elec-
tronic structure [34], theoretically achieved by solv-
ing the Schrödinger equation alone. For complex
systems, the electrostatic potential of the struc-
ture cannot be considered as a constant, which be-
comes even more obvious when there are impu-
rities and thereby free charges in the structure.
In fact, the effects of free carrier and accumula-
tion of charge in the structure cannot be ignored.
Therefore, in this study, we particularly developed
the effect of doping of the surrounding media, the
cylindrical nanowire, on QD by introducing the self-
consistent coupled Schrödinger-Poisson equations
to calculate the physical quantities of the nanostruc-
tures more precisely.

The rest of this article is organized as fol-
lows: first, the basic equations and the coupled
Schrödinger-Poisson equations are presented. Fur-
ther, the related equations are written in cylindrical
coordinates as it is required in our calculations and
some optical parameters are introduced. The self-
consistency requirement in doped heterostructures
is an aspect of the calculations of electronic prop-
erties [36]. Next, the aforementioned equations are
used to consider the electronic and optical prop-
erties of a quantum dot located at the center of
a doped cylindrical nanowire. Finally, the effects of
the doping of the nanowire on the physical proper-
ties of QD are determined and ways how this impu-
rity can affect physical properties are explained.

2. Basic equations

It is necessary to solve the Schrödinger equation
along with the Poisson equation simultaneously to
obtain electronic properties of materials acurately,
in particular the nanostructures at different physi-
cal conditions. This gives relatively precise results
as it takes into account the interaction of electrons
and electric potentials at each point. The Hamilto-
nian of a crystalline solid system consisting of elec-
trons and ions is given by:

−∇·
(

~2

2m∗e
∇ψe (r)

)
+V (r)ψe (r) =Eeψe (r) . (1)

Here, m∗e is the effective mass of the electron, ~ is
Planck’s constant, Ee and ψe(r) are energy eigen-
value and wave function of the conduction band,
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respectively, and V (r) is the spatially varying po-
tential. In order to obtain the self-consistent solu-
tion of the structure, the Poisson equation must be
solved to determine the electrostatic potential. The
Poisson equation links the charge density distribu-
tion and the electrostatic potential of the structure
and is given by:

∇ · [ε∇φ (r)] = ρ̃ (r) , (2)
where

ρ̃ (r) = −e
(
N+
d − ne

)
. (3)

Here, ε is the static dielectric constant, e is the elec-
tron charge, N+

d is the total density of ionized
dopants and ne is the electron density distribution
in the conduction band. The electrostatic potential
φ (r) in (2) is related to the potential energy V (r)
in an arbitrary quantum well as follows:

V (r) = −eφ (r) + ∆Ec, (4)
where ∆Ec is due to the heterojunction band off-
set [37]. The electron density ne is calculated with

ne =
∑
m

nm |(ψe)m|2 , (5)

where m is the number of a bound state, and nm is
the number of electron occupation in the m-th sub-
bands of the wave function ψe [22]. To calculate nm,
one should integrate the density of the states D(E)
weighted by the Fermi Dirac distribution function:

f (E) =
1

1 + exp
(
E−Ef

kBT

) , (6)

accordingly

nm =

∞∫
Em

D(E)

1 + exp
(
E−Ef

kBT

) dE. (7)

Here T is the selected temperature for self-
consistent calculation (T = 300 K), Ef is the Fermi
energy, Em is the subband energy level that is oc-
cupied by an electron and kB is the Boltzmann con-
stant.

3. Self-consistent solution
of Schrödinger-Poisson equations

The self-consistent solution involves solving
the Poisson equation to achieve the electric po-
tential related to the distribution of charge carri-
ers and donor atoms. By using this electric po-
tential in the Schrödinger equation, the eigenval-
ues and associated eigenfunctions are obtained, and
subsequently the new charge distribution is calcu-
lated. The process of calculating the electric poten-
tial from the charge distribution and then calculat-
ing the charge distribution from the electric poten-
tial is repeated through iteration until the electric
potential satisfies certain error criteria. In order
to solve these equations numerically, it is necessary
to discretize the Schrödinger and Poisson equations
by a finite difference scheme to obtain a standard
matrix eigenvalue problem.

The Poisson equation can be written in cylindri-
cal coordinates. Because of the axial symmetry in
the structure, the azimuthal angle dependency is ig-
nored. The equation governing the potential is as
follows:(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂2

∂z2

)
φ = − ρ̃ (ρ, z)

ε
. (8)

This equation is discretized by using the finite dif-
ference three-point scheme:

φi,j =
1

Σi,j

[
ρi,j
εi

+Ai,j

]
, (9)

where

Ai,j = φi,j−1

(
1

∆ρ2
− 1

2ρi∆ρ

)
+φi,j+1

(
1

∆ρ2
+

1

2ρi∆ρ

)
(10)

Σi,j =
2

∆ρ2 + ∆z2
. (11)

In the above relations, the index i indicates
the mesh points in the z-direction and index j shows
the mesh points along the ρ-direction, ∆z and ∆ρ
also denote the mesh size between two points in
the z and ρ-direction, respectively. Due to cylindri-
cal symmetry (axial symmetry), the azimuthal part
of wave functions is separated as Φ (ϕ) = 1√

2π
e imϕ,

with m = 0,±1,±2,±3, . . . . For the ground state
wave function, the azimuthal quantum number is
zero (m = 0). Therefore, the Schrödinger equation
can be rewritten in cylindrical coordinates as:

−

[
~2

2m∗e,h

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂2

∂z2

)
+ V (ρ, z)

]
×ψe,hn (ρ, z) = Ee,hn ψe,hn (ρ, z) (12)

and further also discretized, using a three-point fi-
nite difference scheme, namely:

− ~2

2m∗e,h

[
1

∆ρ2
(ψi+1,j − 2ψi,j + ψi−1,j)

+
1

2(i− 1)∆ρ
(ψi+1,j − ψi−1,j)

+
1

∆z2
(ψi,j+1 − 2ψi,j + ψi,j−1)

]
+Vi,jψi,j = Eψi,j . (13)

This is a differential equation that connects
the value of the wave function at the grid point
(ρi, zi) to its values at the neighboring grid points
(ρi±1, zi) and (ρi, zi±1). The potential energy term
(V i,j) in this equation is obtained by discretizing (4)
as follows:

Vi,j = −qφi,j + ∆Eci,j ,

where φi,j is the solution of (9).

4. Optical properties

When the electronic structures such as energies
and corresponding wave functions are determined,
it is appropriate to calculate the optical properties
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such as the absorption coefficients (ACs) and
refractive index (RI) changes for the structure,
using the density matrix approach. These coeffi-
cients are calculated [38, 39] for transition between
the ground and first excited states. The linear and

third order nonlinear absorption coefficients are
given by:

α(1) (ω) = ω

√
µ

εrε0

σv |M12|2 ~Γ12

(E21 − ~ω)
2

+ (~Γ12)2
(15)

and

α(3) (I, ω) = −ω
√

µ

εrε0

I

2ε0nrc

σv |M12|2 }Γ12[
(E21 − }ω)

2
+ (}Γ12)2

]2
×

{
4 |M12|2 −

(M22 −M11)
2 [

3E2
21 − 4E21}ω + }2

(
ω2 − Γ 2

12

)]
E2

21 + (}Γ12)
2

}
(16)

and for the total ACs, the expression:
α (I, ω) = α(1) (ω) + α(3) (I, ω) (17)

is defined.
The linear and nonlinear RI changes can be obtained by the same procedure, thus:
∆n(1)(ω)

n(r)
= ω

1

2ε0n2r

σv |M12|2 (E21 − ~ω)

(E21 − ~ω)
2

+ (~Γ12)2
(18)

and
∆n(3) (ω)

n (r)
=

µcI

4n3rε0

σv |M12|2[
(E21 − }ω)

2
+ (}Γ12)

2
]2

×

{
4 |M12|2 (E21 − }ω)− (M22 −M11)

2

E2
21 + (}Γ12)

2

×
[
(E21 − }ω)

(
E21 (E21 − }ω)− (}Γ12)

2
)
− (~Γ12)2 (2E21 − ~ω)

]}
(19)

and the total RI changes can be expressed as:
∆n(ω, I)

n (r)
=

∆n(1)(ω)

n(r)
+

∆n(3) (ω, I)

n (r)
. (20)

In (15)–(19), I = 2ε0nrc |E|2 is the intensity of
the electromagnetic field, E21 = E2 − E1 is the en-
ergy difference between the two lowest electronic
states and σv represents the electron density. Next,
µ and εr are the permeability and permittivity of
the system, respectively, and Γ12 = 1

τ , where τ is
the relaxation time and Mij = |〈ψi|ez|ψj〉|, where
(ij = 1, 2) are the matrix elements of the elec-
tric dipole moment which represents the overlap be-
tween the wave functions and the polarization vec-
tor along the z axis. These elements depend on
the polarity of the electromagnetic field, and here
only the third component appears in the calcula-
tions because the polarity of the field is in the di-
rection of the z axis. It should be noted that due to
the axial symmetry of the structure, even if the elec-
tromagnetic field along the radial axis is also con-
sidered, the contribution of the other components
of the electric dipole moment is almost zero.

5. Results and discussion

To investigate the accuracy and reliability of
the present method, we first consider a cylindrical
GaAs nanowire with length L = 400 nm and radius

R2 = 20 nm. The numerical calculated eigenener-
gies (the ground state and first excited energies) are
given in Table I and compared with the analytical
result given by:

En,m,i =
~2

2m

[(αm,i
R

)2
+
(nπ
l

)2]
. (21)

The parameter αm,i is the i-th root of the Bessel
function, i.e., jm(αm,i) = 0. Here, we use the same
parameters as those previously used in [40].
The outcome shows that the numerical results are
in good agreement with analytical solutions.

In the following, we consider a spherical InAs
quantum dot embedded in the center of a GaAs
cylindrical nanowire (see Fig. 1). It is assumed
that the nanowire material with a wider gap is uni-
formly doped with n-type but the quantum dot
material with a narrower gap is undoped. Also,
the strain effects are neglected just for simplicity
reasons. The electronic properties of the structure
are calculated, using the discretized self-consistent
solution of the coupled Schrödinger-Poisson equa-
tions, namely (9) and (13), as well as the optical
properties are obtained using the compact density
matrix approach, namely (15)–(20).

According to Fig. 1, the radius of quantum dot is
R1 and the radius and height of cylindrical nanowire
are R2 and L. In all calculations, it is assumed
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TABLE I

Comparison between analytical and numerical values (this work) for ground state and first excited states of
different carriers in a cylindrical GaAs nanowire.

N
Analytical solution Numerical solution (this work)

Electron [meV] Heavy hole [meV] Electron / error [meV%] Heavy hole / error [meV%]

1 463.2678 318.3378 466.51067 / 0.7% 318.9745 / 0.2%
2 463.3031 318.3440 466.6146 / 0.715% 318.9928 / 0.2%

TABLE II

The depletion region, energy of ground state and first excited state of electron in the conduction band of QD and
their differences for different donor concentrations.

Donor density
×1018 [cm−3]

Depletion
region [Å]

Ground state bound
in QD [meV]

First excited state
bound in QD [meV]

E21 [meV]

no impurities – 15.6 94.4 78.8
0.01 160 −80 −7.5 74
0.05 125 −200 −134 66
0.1 85 −251.6 −188.8 62.8
0.5 35 −394 −339.4 54.6
1 23 −451.3 −398.5 52.8

that R1 = 10 nm, R2 = 20 nm, and L = 400 nm.
Moreover, we took σv = 1024 m−3, T = 300 K,
Γ12 = 1

τ12
, τ12 = 0.2 ps, and µ = 4π × 10−7 H/m.

The cylindrical nanowire is uniformly doped by
a donor atom in such a way that it acts as an n-
type crystal.

In Fig. 2, the conduction band edge of the sys-
tem against the distance from the center of QD
along the cylinder axis (z direction) for a dif-
ferent donor concentration is presented. It can
be observed that the width of the depletion re-
gion decreases as the donor concentration increases
and the band bending near the interface becomes
sharper. Inside QD, the concentration of more
charges on the surface of QD or their penetration
inside changes the potential energy of the surface
whereby the conduction band edge inside QD de-
creases. Since the conduction band edge of QD
is lower than that of the cylinder, the electron in
the cylinder penetrates to QD. Increasing the dop-
ing concentration results in more electrons being
sent to QD. The flow of charge carriers into QD
is terminated when the available energy levels of
QD become full and also the accumulation of charge
carriers in the quantum dot produce a coulomb re-
pulsive potential that prevents the new charges to
enter QD. As a result, the potential energy inside
QD increases. According to Fig. 2, the doping con-
centration increases and, simultaneously, so does
the depth of QD and the width of the depletion
layer narrows down. Table II shows the approxi-
mate width of the depletion regions on both sides
of the quantum well, the energy of ground state,
first excited state and their differences E21 of QD.
As shown in Table II, when the doping concentra-
tion increases, the energy E21 decreses.

Fig. 1. The schematic diagram of an InAs spher-
ical quantum dot located at the center of a GaAs
cylindrical nanowire.

The electrostatic potential of the system is plot-
ted for different n-doping concentrations at 300 K
in Fig. 3. The doping concentration changes
the electrostatic potential and creates a well there.
A larger donor concentration has a narrower de-
pletion region which results in a smaller change in
the potential and lessens its depth. In the cylin-
der region for more doping concentration, a sharper
bending at each interface is observed. This effect
explains why the width of depletion is narrowing.
As it is observed in Fig. 3, beyond the depletion re-
gion, the slope of the electrostatic potential turns to
zero. For Nd = 0, the electrostatic potential inside
and outside of QD is almost constant.

As it is presented in Fig. 4, there are some
extra electrons inside QD which produce a neg-
ative charge but around QD there exists a posi-
tive charge in the depletion layer which is an ad-
ditional confirmation of the trend of electrostatic
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Fig. 2. The effect of n-type donor concentration
(cm−3) of the surrounding media on the conduc-
tion band edge of the cylinder and the spherical QD
along the cylinder axis, z direction, the zero point
is at the center of QD.

Fig. 3. The effect of donor concentration (in
cm−3) of the cylinder on the electrostatic poten-
tial of the InAs/GaAs structure along the cylinder
axis, at T = 300 K.

potential in Fig. 3. Also, it can be seen that a wider
depletion region arises from smaller donor concen-
tration. As Fig. 4 shows, increasing the doping
concentration of the cylinder boosts the positive
charges around QD. In the QD region, the negative
charges are concentrated and for a smaller doping
concentration, the oscillation shows that there are
spherical shell layers with different charge distribu-
tion which could be attributed to the repulsion be-
havior of the electrons.

The energy differences between the ground and
first excited states of QD as a function of its ra-
dius for different donor concentrations are shown
in Fig. 5. As the QD radius increases, the transition
energy between the ground state and first excited
state decreases. Indeed, increasing the QD size

Fig. 4. The effect of donor concentration (in
cm−3) of the cylinder on the distribution of charge
density (a) outside and (b) inside of the QD along
the cylinder axis. The charge density is in the range
of (0–1) × 1018cm−3.

Fig. 5. The energy difference between ground and
first excited states as a function of QD radius R1.

weakens the effect of confinement. In other words,
a larger transition energy exists in smaller spherical
dots due to stronger quantum confinement.

The linear α(1), nonlinear α(3) and total absorp-
tion coefficients α of the structure with different
doping concentrations are compared with the re-
sults of absorption coefficients without doping
in Fig. 6. The resonance peak position experiences
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Fig. 6. The linear (dash line) α(1), nonlinear (dot
line) α(3) and total absorption coefficients (solid
line) α for the given structure at different doping
concentrations (cm−3).

Fig. 7. The linear (dash line) ∆N (1)/nr , nonlin-
ear (dot line) ∆N (3)/nr and total refractive index
changes (solid line) ∆N/nr for the given structure
based on GaAs/InAs interface in different doping
concentrations (cm−3).

a red shift by increasing the doping concentration.
As it can be seen, the magnitude of the third or-
der nonlinear absorption coefficient increases, just
as the doping concentration does. When the dop-
ing concentration increases, the linear absorption
coefficient increases as long as the concentration is
≤ 5× 1016 cm−3. When it is higher than this con-
centration, it begins to decrease.

There is a reason for these changes. According
to (16), the nonlinear absorption coefficient is pro-
portional to M4

21, and since the overlapping of the
wave functions increases just as concentrations do,
the coefficient α(3) increases too. In other words,
the linear term is proportional toM2

21E21 (see (15)),

Fig. 8. The linear (solid line), nonlinear (negative)
and total absorption coefficients as a function of
photon energy for different incident optical intensi-
ties (MW/cm2) and Nd = 1017 cm−3.

and by increasing the doping concentration the term
of M2

21 increases, whereas the energy difference
E21 decreases. Nonetheless, at low concentrations
the increase in M21 overtakes the decrease of E21,
so that the linear term increases while in a higher
concentration, Nd > 5× 1016 cm−3, the decrease in
E21 dominates the increase in M21. Thus, the mag-
nitude of the linear absorption coefficient peak de-
creases. The same behavior occurs in the total ab-
sorption as in the linear absorption due to the dom-
ination of linear term in α relation (17).

The magnitude of the resonance peaks of the lin-
ear, nonlinear and total refractive index changes —
as a function of photon energy for different doping
concentrations — is shown in Fig. 7.

The magnitudes of the linear ∆N (1)/nr and
the nonlinear refractive index changes ∆N (3)/nr
are proportional to M2

21 and M4
21, respectively.

As explained above, the magnitude of their peaks
increases simultaneously as the donor concentration
is increased.

Another parameter that affects changes in
the magnitude of optical coefficients is the incident
optical intensity I. The linear, nonlinear and to-
tal absorption coefficients against photon energy
for different incident optical intensities are plot-
ted in Fig. 8 for Nd = 1017 cm−3 and in Fig. 9 for
Nd = 1016 cm−3. As the incident optical intensity
increases, the nonlinear part of the absorption coef-
ficient increases but the linear term does not change,
as shown in (15)–(19). Since the linear and nonlin-
ear terms have the opposite sign, the total absorp-
tion coefficient is reduced. As seen in Figs. 8 and 9
for I > Ic, the peak in the maximum of the total
absorption is converted to two peaks. This effect
occurs because the nonlinear term is dominated.
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Fig. 9. The linear (solid line), nonlinear (negative)
and total absorption coefficients as a function of
photon energy for different incident optical intensi-
ties (MW/cm2) and Nd = 1016 cm−3.

6. Conclusions

The semiconductor heterostructure involving an
InAs spherical quantum dot located at the cen-
ter of an n-type doped GaAs cylindrical nanowire
was investigated. The self-consistent solution of
Schrödinger-Poisson equations in cylindrical coor-
dinates was used to obtain the electronic structure,
energy levels and optical properties of QD at dif-
ferent donor concentrations Nd of the surround-
ing media. We found that as the doping concen-
tration increases, the depletion region around QD
decreases, and the conduction band bending be-
comes sharper. Moreover, a wider depletion region
at a lower doping concentration leads to a larger
change in electrostatic potential. The concentra-
tion of the positive and negative charges confirms
the behavior of electrostatic potential. The energy
difference between the lowest two levels decreases
as the radius of QD increases but in higher dop-
ing concentrations, this difference becomes smaller.
It is also deduced that the doping concentration
of the surrounding media can play an important
role in designing the optical properties of QD. The
magnitude of the resonance peak of absorption co-
efficients and the refractive index changes depend
on the doping concentration. As the doping con-
centration increases, the total absorption coefficient
rises for Nd ≤ 5× 1016 cm−3 and then it decreases
but the refractive index changes increase regard-
less. In both cases, they experience a red shift. Fi-
nally, when the incident optical intensity increases,
the total absorption coefficients decrease. It seems
that this behavior is due to the existence of a more
mobile charge in the system. In conclusion, it
is possible to design a quantum dot with the re-
quired electronic and optical properties in the far
infra-red spectra.
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