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We investigate the electric field induced Rashba coupling effect on spin- and magnetic properties of
the system of two interacting electrons confined to a parabolic semiconductor quantum dot. The mag-
netic field B is applied perpendicularly to the plane of the dot. The total Hamiltonian of the system
including Coulomb interaction between the electrons, the external B field and the spin–orbit Rashba
coupling is diagonalized using properly constructed basis. The electron correlation is taken into ac-
count exactly. The relative motion Schrödinger equation within the effective mass approximation has
been solved by power series expansion method. The solutions are utilized for study the mechanism
of mixing of two-electron spin states and to demonstrate how fundamental magnetic characteristics of
the system reflecting B-field dependence of eigenenergies can be manipulated by means of electric field.
Calculations are performed with material parameters of InSb quantum dot.
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1. Introduction

Spin–orbit (SO) coupling in low-dimensional sys-
tems becomes recently the subject of extensive the-
oretical and experimental investigations. This is re-
lated to the key issue appearing in spintronics that
is control of electron spin dynamics by means of ex-
ternal fields [1]. Due to SO interaction, the electron
spin cannot be completely decoupled from its or-
bital motion. This fact has both positive and nega-
tive consequences. If the electron spin is completely
decoupled from its orbital motion then the only way
to influence it could be provided by an external
magnetic field. As is well known, if an electron
moves in an external electric field it experiences,
in its rest frame, also a magnetic field. This leads
to the effect known as the SO coupling. The ef-
fect has the origin in relativity. How large the ef-
fect is, depends on the intensity of the inner mag-
netic field experienced by the electron in its rest
frame that is proportional to the external electric
field. In solids, the electric fields responsible for
the SO coupling are associated mainly with two
asymmetries, the bulk inversion asymmetry and
the structural inversion asymmetry. The latter
arises from external confining potentials, created
by materials interfaces or gate electrodes, giving
rise to the so-called Rashba (Bychkov–Rashba) SO
coupling [2–5]. In most of low-dimensional systems
the Rashba coupling dominates other contributions
to the SO interaction. The Rashba SO coupling

extends greatly the abilities to control the spin dy-
namics since it allows for controlling the dynamics
also by means of an electric field. However, the spin
states influenced by the electric field may be de-
void of phase coherence since SO interaction cou-
ples orthogonal orbital states with opposite spins.
Even if the effect is small the spin quantum num-
ber is no longer a good quantum number and, un-
til we are not interested either in particular posi-
tions of the particles nor in other degrees of free-
dom, the spin states could be described by means
of the density matrix formalism [6, 7]. The problem
of phase coherence in systems with the SO coupling
present has been recently studied and the relation
of the information entropy to experimental charac-
teristics of the spin was obtained [8, 9]. A similar
correspondence in the context of a scattering prob-
lem has been studied experimentally and the con-
nection of the information entropy with the spin
polarization has been demonstrated [10].

Many current investigations in semiconductor
physics are devoted for the effect of SO coupling
on various properties in different systems [11–17].
Physical processes related to disorder in spin–orbit
coupling in two-dimensional electron gas with static
and random sources of disorder have been investi-
gated theoretically and comprehensively discussed
in [18]. Stability of skyrmions in two-dimensional
systems with the Rashba spin–orbit coupling has
been obtained using a general analysis based on
symmetry [19]. A spontaneous current production
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in the atomic thickness region near the interface
between a superconductor and a ferromagnet has
been recently predicted in superconducting sys-
tems with strong SO coupling [20]. The general-
ized approach to spin transport at interfaces with
SO coupling has been proposed as a generaliza-
tion of magnetoelectronic circuit theory [21–23].
The occupation number and the spin accumulation
in parallel double dots with SO interaction have
been studied theoretically by utilizing the Keldysh
NEGF method [24]. Many other studies related
to the spin have been performed on various prop-
erties and phenomena in quantum dots (QDs) in-
cluding the magnetic field and Coulomb interac-
tions [25–30]. The classical example is a sequence
of singlet-triplet phase transitions [31–34] that ap-
pear as discontinuities in the magnetic properties
of the dot [35]. The magnetization of non-circular
QDs has been studied in the frame of the Hartree
approximation [36]. Spin transport and magnetiza-
tion dynamics in a quantum dot spin valve, i.e., two
magnetic reservoirs coupled to a quantum dot have
been studied taking into account effects of strong
correlations [37, 38]. Quantum entanglement in
Hooke’s law atoms for different dimensionalities of
the space has been studied in the frame of density
matrix formalism [39]. The B field dependence of
the magnetization and the magnetic susceptibility
for the two-electron InSb QD without SO interac-
tion has been investigated [40]. One of the most
important processes originated from SO interaction
is the spin flips for the electron states in crystals
without an inversion center [41]. The rates for
the spin-flip transitions between the Zeeman sub-
levels in a quantum dot have been calculated by
considering the mechanism of spin–phonon coupling
via SO interaction [42]. The spin relaxation time T1

(the time of a spin-flip process) and spin decoher-
ence time T2 (the lifetime of a coherent superpo-
sition of spin-up and spin-down states) in a GaAs
quantum dot have been investigated for the Dressel-
haus and Rashba SO couplings [43]. If the qubit is
operated as a classical bit, its decay time is given by
the spin relaxation time T1. For quantum computa-
tion, however, the spin decoherence time T2 must be
sufficiently long. It has been shown in the paper [43]
that the decoherence time T2 of an electron spin in
a GaAs QD is as large asthe relaxation time T1 for
the spin decay based on SO mechanisms.

In the present work we investigate the influ-
ence of the Rashba SO coupling and an exter-
nal magnetic field on spin- and magnetic proper-
ties of the two-electron, parabolic QD. In particu-
lar, we investigate the Rashba SO coupling effect
on mixing mechanism of two-electron spin states
and on the magnetization and the magnetic sus-
ceptibility of the dot, using parameters appropri-
ate for an InSb nanostructure. The Coulomb inter-
action between the electrons, the external B field
and the electron correlation are taken into account
exactly in the sense that there are no approxima-

tions made on the level of the Schrödinger equa-
tion related to relevant terms. All these contri-
butions are taken into account simultaneously, for
the first time. We note that due to a parabolic
confinement, the two-electron wave functions can
be found in the form of explicitly correlated func-
tions (dependent explicitly on relative motion coor-
dinates). Relative motion two-electron wave func-
tions and energies are obtained in a frame of power
series expansion method, that provides very accu-
rate solutions [34, 44–46]. The solutions are used to
include the SO coupling effect, perturbatively. One
should be also noted that the problem is treated as
the two-dimensional one since the energy scale as-
sociated with confinement in the vertical direction
is supposed to be very large compared to the energy
scale, related to the lateral confinement. Under this
assumption the dynamics may be considered as ef-
fectively two-dimensional one.

2. Basic equations

The system we study in this paper is the two-
dimensional, two-electron Rashba QD in the pres-
ence of a magnetic field. In the system the elec-
trons are confined to a plane due to appropriate
nanostructure. The electrostatic confining poten-
tial associated with a semiconductor structure form-
ing the QD is supposed in the form of an asym-
metric potential well producing nonzero gradient
in the z-direction perpendicular to the plane of
the dot. The zero-point energy has been chosen
as confinement ground state energy of the quan-
tum well. The confining asymmetric potential well
is supposed as extremely narrow. Consequently,
we confine ourselves to the one-band approxima-
tion. The potential is the source of the electric field
that in turn is the source of the Rashba spin–orbit
interaction. In general, the electric field may be
the sum of an external field and the self-consistent
electric field created by the nanostructure or gate
electrodes. The situation is depicted in Fig. 1.

Fig. 1. Asymmetric semiconductor system hosting
two-dimensional electron gas (2DEG). Confining
potential associated with the structure is the source
of the Rashba SO coupling. The QD can be pro-
duced by applying a lateral bias to a 2DEG leading
to electron localization.
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In the presence of B field the Rashba SO
coupling is described by the Hamiltonian

HSO = 2
ηR

~
· (s1 × π1 + s2 × π2) , (1)

where ηR = ηRẑ and ηR is the phenomenological
Rashba parameter. Here, m is the effective mass of
the electron, e is the absolute value of the electron
charge. Supposing parabolic confinement with the
strength ω0, the total Hamiltonian of two electrons
confined to a QD reads
Htot = H0 +HSO, (2)

where

H0 =

2∑
i=1

(
1

2m
π2
i +

1

2
mω2

0r
2
i

)
+

e2

εr|r1 − r2|

+g∗µB(s1 + s2) ·B, (3)
where g∗ denotes the effective Landé factor,
µB = e~/2mec is the Bohr magneton, εr is
the dielectric constant, si are dimensionless spin
operators and

πi = − i~∇i +
e

c
A(ri),

A(r) =
1

2
B × r. (4)

One should be noted here that, for a free electron
g∗ = 2, but for semiconductors we may have
g∗ > 0, as well as g∗ < 0. Hereafter B = Bẑ.
It is convenient for further analysis to introduce
effective atomic units: aB = ~2

me2 as unit of length,
Eh = me4

~2 as unit of energy, B0 = m2e3c
~3 as unit of

magnetic field and the atomic unit of the Rashba
coupling constant

η0 = e2 = α0~c ≈ 1.43996 eV nm, (5)
where α0 = e2

~c ≈ 1/137 is the fine structure
constant. Note that since η0 is independent of
the electron mass and it determines the refer-
ence magnitude of the Rashba SO strength for
arbitrary nanostructure. The Rashba parameter
may vary by two orders of magnitude for various
materials. In the case of InGaAs/InAlAs nano-
structure ηR ≈ 0.67× 10−11 eV m ≈ 0.005η0

and for topological insulator Bi2Se3,
ηR ≈ 4× 10−10 eV m ∼ 0.3η0 [47].

The spin operators acting in the four-dimensional
Hilbert space of the two-electron spin states are de-
fined in the standard manner:

s1 =

(
1

2
σ

)
⊗ I, s2 = I⊗

(
1

2
σ

)
, (6)

where I is the 2 × 2 unit matrix. The two-electron
spin operators are given in Appendix A. By intro-
ducing centre-of-mass and relative motion coordi-
nates

R = {X,Y } =
1

2
(r1 + r2),

r = {x, y} = r1 − r2 (7)
and using effective atomic units we transform
the Hamiltonian (3) to the form
H0 = Hc.m. +Hrel +Hspin, (8)

where

Hc.m. = −1

4
∇2

R + Ω2R2 − i

2
γ
∂

∂φ
,

Hrel = −∇2
r +

1

4
Ω2r2 +

1

εr|r|
− i

2
γ
∂

∂ϕ
,

Hspin =
1

2
gγŜz, (9)

where Ω =
√
Ω2

0 + 1
4γ

2, Ω0 = ~ω0/Eh, γ = B/B0

and g = g∗(m/me). The angles φ and ϕ are
polar angles corresponding to c.m. and relative
motion coordinates, respectively. It is worth to
point out that the scaling factor m/me signifi-
cantly lowers the spin contribution to the Zee-
man shift, because of small effective mass com-
paring to the free electron mass. This contribu-
tion become important for systems with large ab-
solute value of g∗, such as InSb nanostructure, for
which g∗ = −51.56.

Using coordinates (7) and the spin operators
given in Appendix A, we can find matrix representa-
tion of the Hamiltonian (2). The SO part decouples
into two terms,
HSO = Hc.m.

SO +Hrel
SO, (10)

where

Hc.m.
SO = α


0 −e− iφ −e− iφ 0

e iφ 0 0 −e− iφ

e iφ 0 0 −e− iφ

0 e iφ e iφ 0

 ∂

∂R

−α


0 e− iφ e− iφ 0

e iφ 0 0 e− iφ

e iφ 0 0 e− iφ

0 e iφ e iφ 0

 D̂R, (11)

where α = ηR/η0 and

D̂R =
1

2
γR− i

R

∂

∂φ
. (12)

The relative motion part of the SO Hamiltonian has
a similar structure,

Hrel
SO =

α

2


0 e− iϕ −e− iϕ 0

−e iϕ 0 0 −e− iϕ

e iϕ 0 0 e− iϕ

0 e iϕ −e iϕ 0

 ∂

∂r

+
α

2


0 e− iϕ −e− iϕ 0

e iϕ 0 0 −e− iϕ

−e iϕ 0 0 e− iϕ

0 −e iϕ e iϕ 0

 D̂r, (13)

where

D̂r =
1

2
γr − i

r

∂

∂ϕ
. (14)

To define good quantum numbers, we note that
[Ŝ2,H0] = 0, [Ŝ2,Hc.m.

SO ] = 0,

[Ŝ2,Hrel
SO] 6= 0, (15)
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where Ŝ2 is the square of the total spin,

Ŝ2 =


2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

 . (16)

Therefore, in a case of the system described by
the Hamiltonian H0, the total spin is conserved,
whereas it is not conserved for the system with
the SO interaction present. We can also see from
commutation relations (15) that the total spin
quantum number may be changed owing to the rel-
ative motion. The c.m. motion conserves the total
spin. We can use eigenstates of H0 as the zero-
order approximation in the perturbation approach
to the effect connected with SO coupling. We will
confine ourselves to the first-order perturbation the-
ory since the SO coupling constant for InSb struc-
ture is at most of the order ≈ 0.03 [12, 48]. A
comprehensive analysis of the second-order energy
correction for one-electron Rashba QD may be
found in [9].

In the case of any two-electron system a natu-
ral basis for spin states is the singlet-triplet ba-
sis. The basis has well-defined symmetry properties
with respect to interchanging of the electrons. Tak-
ing this basis for the spin states, we can determine
quantum numbers of spatial part of the total wave
function to H0, according to the Pauli exclusion
principle. By writing the total wave function of two
electrons as Ψ(1, 2) = Ψc.m.(R)ψ(r)χ(1, 2) we can
easily find that the operation of exchanging two
electrons leads to Ψ(2, 1) = Ψc.m.(R)ψ(−r)χ(2, 1).
Taking into account that the singlet (triplet) spin
state is antisymmetric (symmetric) with respect to
interchanging of the electrons, we have χ(2, 1) =
(−1)S+1χ(1, 2). Therefore, the total spin of two
electrons confined to the 2D system with the circu-
lar symmetry is uniquely determined by the mag-
netic quantum number of the relative motion, ac-
cording to the relation (−1)S = (−1)|mz|. Hence,
the singlet (triplet) spin states correspond to even
(odd) mz.

We look for eigenstates to the total Hamilto-
nian (2) as eigenstates of the projection of the total
angular momentum

Ĵz = − i
∂

∂φ
− i

∂

∂ϕ
+ Ŝz. (17)

One can easily find that
[Ĵz,Htot] = 0. (18)

Therefore, the zero-order solution may be con-
structed in the form
|Ψ〉 = CS |ΦS〉+ C+|ΦT+〉

+C0|ΦT0〉+ C−|ΦT−〉, (19)
where we have introduced the following notations:

|ΦS〉 =
e iMzφ

√
2π

e imzϕ

√
2π

FNMz
(R)Gnmz

(r)|00〉,
(20)

where mz = 0,±2,±4, . . . and

|ΦT+〉 =
e im′zϕ

√
2π

e i (Mz+∆mz−1)φ

√
2π

×Gn′m′z (r)FN ′,Mz+∆mz−1(R)|11〉,

|ΦT0
〉 =

e im′zϕ

√
2π

e i (Mz+∆mz)φ

√
2π

×Gn′m′z (r)FN ′,Mz+∆mz
(R)|10〉,

|ΦT−〉 =
e im′zϕ

√
2π

e i (Mz+∆mz+1)φ

√
2π

×Gn′m′z (r)FN ′,Mz+∆mz+1(R)|1,−1〉, (21)
where m′z = ±1,±3, . . . and ∆mz = mz −m′z. Ra-
dial amplitudes and energies for c.m. and relative
motion part, without the Coulomb interaction, are
well known. They correspond to the 2D harmonic
oscillator potential. For the case of interacting elec-
trons solutions can be obtained using the power
series expansion method. Radial amplitudes cor-
responding to both non-interacting and interacting
case are given in Appendix B. We note that the
states (20) and (21) correspond to the same eigen-
value of Ĵz, equal to Mz +mz. In the triplet sector,
the radial amplitudes may have, in general, differ-
ent quantum numbers (n′, N ′). However, we have
limited ourselves to the same pairs of the quan-
tum numbers since overlap integrals between radial
functions strongly decrease with increasing differ-
ence between radial quantum numbers.

Using for spin states the basis B2={S, T+, T0, T−}
(see Appendix A) we can directly obtain matrix
representation for H0. We can write it as the sum
of three terms,

[H0] = [Hc.m.] + [Hrel] + [Hspin], (22)
where all matrices have diagonal forms,

[Hc.m.] = diag[ENMz
, EN ′,Mz+∆mz−1,

EN ′,Mz+∆mz
, EN ′,Mz+∆mz+1], (23)

[Hrel] = diag[Enmz , En′m′z , En′m′z , En′m′z ], (24)
where ENMz and Enmz denote the c.m. and
relative motion energies, respectively, and

[Hspin] =
1

2
γg diag[0, 1, 0,−1]. (25)

After some algebraic calculations, the SO Hamil-
tonian matrix is found in the form

[HSO] =


0 �rel 0 Nrel

�rel 0 �c.m. 0

0 �c.m. 0 Oc.m

Nrel 0 Oc.m 0


} S↔ TT↔ T.

(26)
On the right we indicated blocks responsible for
coupling between relevant spin states. The entries
of the matrix are given in Appendix C. Mixing of
different spin states due to SO interaction is illus-
trated graphically in Fig. 2. One can see again that
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Fig. 2. Mixing of two-electron spin states due to
SO coupling.

the c.m. motion does not change the total spin.
The c.m. motion mixes only appropriate triplet spin
states.

The Schrödinger equation for the two-electron
Rashba QD,
Htot|Ψ〉 = E|Ψ〉, (27)

has the matrix representation
[Htot]{C} = E{C}, (28)

where [Htot] = [H0] + [HSO] and {C} =
[CS , C+, C0, C−]T. Solving the last algebraic equa-
tion we can determine four levels having the same
projection of the total angular momentum.

3. The magnetization operator

In order to study magnetic properties of the sys-
tem composed from certain number of charged par-
ticles Np, it is convenient to introduce the magneti-
zation operator. The magnetic moment of the sys-
tem (the magnetization) may be obtained by aver-
aging the magnetization operator. According to [49]
we defined the magnetization operator:

M = − e

2mc

Np∑
i=1

ri ×
(
pi +

e

c
A(ri)

)

−g e~
2mc

Np∑
i=1

si, (29)

where, in order to include both the orbital and
the spin magnetization, we have supplemented
the operator defined in [49] by the spin term.
For a uniform magnetic field one obtains

M = − e~
2mc

Np∑
i=1

(li + gsi)

− e2

4mc2
B

Np∑
i=1

(
x2
i + y2

i

)
, (30)

where operators li and si are dimensionless.
The magnetic moment of the system gives the B
dependent contribution

dH′ = −M · dB. (31)
An alternative expression for the Hamiltonian H0

in terms of M , reads

H0 =

Np∑
i=1

p2
i

2m
−
∫
M · dB + Vconf + VC, (32)

where the potentials Vconf = mω2

2 (r2
1 + r2

2) and
VC = 1

εr
e2

r1−r2
are B independent. The magneti-

zation operator reads as

µ = −1

2

Np∑
i=1

(li + gsi)−
1

4

B

B0

Np∑
i=1

(
x2
i + y2

i

)
(33)

in units of [e~/mc] (two effective Bohr magnetons).
We can also express the magnetization in units
of [meV/T] according to the relation[

e~
mc

]
=
Eh
B0

=
0.27211

2.35

me

m

[
meV

T

]
. (34)

In the case of a planar system with circular sym-
metry, placed in a magnetic field oriented along
the z-axis, the only non-zero component of the mag-
netization vector µ is its z-component, µz. Using
the c.m. and relative motion coordinates (Np = 2)
we obtain

µz = −1

2
〈Ψ|Ĵz|Ψ〉+

1− g
2
〈Ψ|Ŝz|Ψ〉

−1

2
γ

(
〈Ψ|R2|Ψ〉+

1

4
〈Ψ|r2|Ψ〉

)
. (35)

For the state vector |Ψ〉 given by (19) one obtains

µz = −1

2
(Mz +mz) +

1− g
2

(
C2

+ − C2
−
)

−1

2
γ

(
〈Ψ|R2|Ψ〉+

1

4
〈Ψ|r2|Ψ〉

)
. (36)

Using the virial theorem one can easily find that in
any state of the c.m. motion

〈NMz|R2|NMz〉 =
1

2Ω
(2N +Mz + 1). (37)

In a similar way may be calculated the second ma-
trix element in the last term of µz,

〈nmz|r2|nmz〉 =
2

Ω
(2n+mz + 1). (38)

In the case including the Coulomb interaction,
the average value of r2 is calculated numerically, us-
ing approximate wave functions (see Appendix B).

4. Results and discussion

We studied the effect of electric-field induced SO
coupling in the presence of the external B field
for two interacting electrons confined to the semi-
conductor QD, within the effective mass approxi-
mation. We shown that the SO coupling signifi-
cantly affects spin-dependent properties of the dot.
We investigated the influence of the coupling on
the magnetization and magnetic susceptibility of
the dot as functions of external magnetic field and
the Rashba SO coupling strength. We showed how
mixing of two-electron spin states is correlated with
the c.m. motion and the relative motion. To refer-
ence our analysis to a realistic world, the parameters
of the model were fixed on values corresponding to
the InSb nanostructure.
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TABLE I

Relative motion energies Erel (in meV) of two-electron InSb QD (m = 0.0139me, εr = 14) compared with energies
of noninteracting electrons E(0)

rel , for different confining energies. The contribution from the Coulomb interaction
is given by δ = (Erel − E

(0)
rel )/E

(0)
rel (in %). The magnetic field γ = 0.

mz n
~ω0 = 4 meV ~ω0 = 8 meV ~ω0 = 20 meV

Erel E
(0)
rel δ Erel E

(0)
rel δ Erel E

(0)
rel δ

0 0 6.94761018 4.00000000 73.7 12.3554673 8.00000000 54.4 27.1836969 20.0000000 35.9

1 14.4316019 12.0000000 20.3 27.5145868 24.0000000 14.6 65.6633485 60.0000000 9.4

2 22.1377351 20.0000000 10.7 43.0647893 40.0000000 7.7 104.901463 100.000000 4.9

1 0 9.68139008 8.00000000 21.0 18.4015478 16.0000000 15.0 43.8315190 40.0000000 9.6

1 17.4923934 16.0000000 9.3 34.1232558 32.0000000 6.6 83.3751502 80.0000000 4.2

2 25.3678468 24.0000000 5.7 49.9425297 48.0000000 4.1 123.082778 120.000000 2.6

2 0 13.2848780 12.0000000 10.7 25.8255773 24.0000000 7.6 62.8985870 60.0000000 4.8

1 21.1836273 20.0000000 5.9 41.6793728 40.0000000 4.2 102.663060 100.000000 2.7

2 29.1093292 28.0000000 4.0 57.5727170 56.0000000 2.8 142.492161 140.000000 1.8

Fig. 3. Dependence on the B field of lowest rel-
ative motion levels including spin (n = 0, . . . 10,
mz = 0,±1,±2,±3,±4, Sz = 0,±1) of two-electron
QD: (a) interacting electrons, (b) noninteracting
electrons. Confining energy ~ω0 = 8 meV. InSb
material parameters are used: m = 0.0139me,
g∗ = −51.56, εr = 14.

In Fig. 3a and b there are compared relative mo-
tion energy spectra for systems with the Coulomb
interaction present and with the Coulomb interac-
tion neglected, respectively. The SO coupling is not
apparent at this scale. In general, the Coulombic re-
pulsion upshifts the energy levels and moves cross-
ings of levels towards lower magnetic fields.

In Table I there are given relative motion en-
ergies of the two-electron QD for increasing con-
fining energies ~ω0. Energies are computed with
the accuracy of 9 decimal figures. We also dis-
play the relative Coulomb contribution (including
electron correlation) given by δ. We can see that
the role of the Coulomb interaction is very impor-
tant. One can see that for low-lying states, the rela-
tive Coulomb contribution is greater that for higher
states. In particular, for ground state δ ≈ 74%.
This means that the Coulomb interaction strongly
affects low-temperature properties of the dot, such

Fig. 4. Levels (N = 0, Mz = 0, n = 0, mz = 0,
n′ = 0, m′z = −1) of the two-electron InSb QD:
(a) with SO coupling (solid lines) and without SO
coupling (dashed lines), (b) levels crossing (dashed
lines) and avoiding crossing (solid lines). Confining
energy ~ω0 = 8meV, the Rashba coupling constant
α = 0.05.

as the magnetization, which are dominated by low-
lying states. We can see that the relative contribu-
tion of the electron–electron interaction decreases
with increasing both the angular momentum quan-
tum number mz and the radial quantum number n.
This follows directly from the behavior of radial
wave functions at small distances.

In Fig. 4a there is given dependence on the B
field of four levels S, T+, T0, T−, in the basis of which
the total Hamiltonian is diagonalized. The levels
are plotted as dashed lines. On the other hand,
levels, plotted as solid lines, correspond to eigen-
states of the total Hamiltonian. Two higher lev-
els are simply shifted relatively to T− and T0, by
approximately constant amounts of opposite signs.
In part (b) there are given two lowest levels that are
mainly a mixture of the singlet S and the triplet T+

states. The states are strongly mixed in the vicinity
of the transition point. We note that the singlet–
triplet anticrossings in two-electron quantum dots
are used as one of the ways for experimental ob-
servations of SO interaction, e.g. see the exper-
imental work on two-electron self-assembled InAs
quantum dots [50].
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Fig. 5. Dependence on B field of magnetization of
InSb QD: (a) ground state with e–e interaction, (b)
ground state without e–e interaction, (c) first ex-
cited state with e–e interaction, (d) first excited
state without e–e interaction. Confining energy
~ω0 = 8 meV. Symbols S, T+ refer to regions with
dominating states S, T+, respectively.

In Fig. 5 there is given the dependence of
the magnetic moment of the dot (the z-component
of the magnetization µ(B)) on the B field.
In the absence of the Rashba coupling, crossings
of S and T+ levels appear as discontinuities in
the magnetization. Due to the SO coupling,
the jump in the magnetization becomes gradual.
One should be noted that the role of the Coulomb
interaction is significant. In general, the interaction
upshifts the ground state magnetization to positive
values. As we can see in part (a), the magneti-
zation may have both positive and negative values
around the transition point while if the Coulomb in-
teraction is absent (part (b)) the ground state mag-
netization is negative. The presence of both signs
means the possibility of changing the magnetic mo-
ment of the dot, from an initial sign to the opposite
one, by means of the magnetic field. In the pres-
ence of the electric field the process is continuous.
This property may have importance for the prac-
tical implementations of QDs in fabrication of de-
vices based on the magnetization, such as magne-
toresistance sensors or other devices using the mag-
netization reversal (switching) [51]. We note that
in the α ≈ 0 limit our result calculated for con-
fining energy ~ω0 = 8 meV fundamentally agrees
with the result by De Groote et al. [40], obtained
for the two-electron InSb QD in the absence of SO
coupling, with a little different material parame-
ters and for the confining energy ~ω0 = 7.5 meV.
In parts (c) and (d) there is given the magnetization
in the first excited state of the dot. The magnetiza-
tion reveals the saturation with increasing B field.
Using (36)–(38) we can find that limγ→∞ µz = −1.
Taking into account (34) one obtains the saturation
value, ≈ −8.6 meV/T.

Fig. 6. Magnetic susceptibilities of InSb QD for
different Rashba coupling constants: (a) ground
state, (b) first excited state. Confining energy
~ω0 = 8 meV. Symbols S, T+ refer to regions with
dominating states S, T+, respectively.

Fig. 7. Ground-state magnetization of InSb QD as
function of confining energy for the Rashba coupling
strength: (a) α = 0.02, (b) α = 0.04.

The behavior of the magnetization in function of
the B field has relevant consequences for the mag-
netic susceptibility of the dot. At temperature
T = 0, the magnetic susceptibility can be defined
as χ = dµz/dγ. We can see in Fig. 6 that there are
created pertinent domains with well-defined signs
of the magnetic susceptibility. In the case of first
excited state, the magnetic susceptibility χ < 0
for every B field and the dot, in this state, is
a diamagnetic.

In Fig. 7 there is given dependence of the magne-
tization curves for increasing confinement. One can
see that for low confinement, crossings of corre-
sponding levels are damped. In a consequence,
the magnetization curves are regular. For higher
confinement, the magnetization discloses decreasing
jump with increasing Rashba coupling strength.

5. Summary

We have presented a detailed theoretical study
of the SO coupling effect induced by self-consistent
electric field created by the nanostructure for two
interacting electrons confined to a parabolic QD, us-
ing semiconductor InSb QD. We note that the two-
electron problem including simultaneously e–e in-
teraction, electron correlation, external B field and
SO interaction is studied for the first time. As well
known the two-electron problem in a parabolic po-
tential in a magnetic field has a unique property of
separability the relative motion from the c.m. mo-
tion. The presence of an external electric field per-
pendicular to the plane of the system does not affect
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this property. This allows for taking into account
the electron correlation exactly also for the sys-
tem in the SO interaction present. The solution to
the relative motion Schrödinger equation including
the Coulomb interaction and external B field has
been obtained by power series expansion method
in combination with the iteration of asymptotic
boundary conditions imposed on the radial func-
tion at finite distance. Using this solution we have
shown that both electron–electron interaction and
electron correlation have important consequences
for spin-dependent properties of the dot in the SO
coupling present. One should be also pointed out
that since we can control the spin–orbit coupling
constant in planar semiconductor systems by means
of external or built-in electric fields, we can change,
by variations of the fields, the magnetic properties
of the system. The precise controlling of the magne-
tization of the system is of particular interest from
the point of view of spintronic devices realization in-
volving magnetic contacts and manipulated by elec-
tric fields. The exploration of the Rashba physics
is now at the heart of the growing research field
of spin-orbitronics, a branch of spintronics focusing
on the manipulation of non-equilibrium materials
properties using SO coupling. Obtained results may
therefore find some applications in experimental in-
vestigations of the Rashba SO coupling.

APPENDIX A: Two-electron spin operators

The spin operators corresponding to the total
spin of two electrons may be obtained as the sum
of single particle spin operators,
Ŝ = s1 + s2. (A1)

Using standard representation, in which single-
electron spin operators s2 and sz are diagonal, re-
ferred to as B1 representation, we obtain immedi-
ately the two-electron spin matrices, by calculating

Ŝ =

(
1

2
σ

)
⊗ I + I⊗

(
1

2
σ

)
. (A2)

The two-electron spin operators in the B1 represen-
tation have forms

Ŝx =
1

2


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

 , Ŝy =
1

2


0 − i − i 0

i 0 0 − i

i 0 0 − i

0 i i 0

 ,

Ŝz =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

 . (A3)

The square of the total spin in the B1 representa-
tion reads

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z =


2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

 . (A4)

We define new basis, referred to as
B2={S, T+, T0, T−}, where
|S〉 ≡ |00〉 =

1√
2

{[
1

0

]
⊗

[
0

1

]
−

[
0

1

]
⊗

[
1

0

]}
=

1√
2


0

1

−1

0

 ,
(A5)

|T0〉 ≡ |10〉 =

1√
2

{[
1

0

]
⊗

[
0

1

]
+

[
0

1

]
⊗

[
1

0

]}
=

1√
2


0

1

1

0

 ,
(A6)

|T+〉 ≡ |11〉 =

[
1

0

]
⊗

[
1

0

]
=


1

0

0

0

 ,

|T−〉 ≡ |1,−1〉 =

[
0

1

]
⊗

[
0

1

]
=


0

0

0

1

 . (A7)

The basis B1 can be obtained from the basis B2 by
the unitary transformation, given by

U =


0 1 0 0
1√
2

0 1√
2

0

− 1√
2

0 1√
2

0

0 0 0 1

 . (A8)

The spin operators in the B2 representation read

Ŝ2 = U†Ŝ2U =


0 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

 ,

Ŝz = U†ŜzU =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 −1

 , (A9)

Ŝx = U†ŜxU =


0 0 0 0

0 0 1√
2

0

0 1√
2

0 1√
2

0 0 1√
2

0

 ,

Ŝy = U†ŜyU =


0 0 0 0

0 0 − i√
2

0

0 i√
2

0 − i√
2

0 0 i√
2

0

 , (A10)

where we have used the same symbols for both
representations.
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APPENDIX B: Radial amplitudes

B.1. Centre-of-mass motion

Solutions to the Schrödinger equation for the c.m.
motion
Hc.mΨc.m = Ec.mΨc.m, (B1)

may be found analytically. The normalized solu-
tions have forms

Ψc.m(R,φ) =
e iMzφ

√
2π

FNMz
(R), (B2)

where the radial amplitude reads

FNMz
(R) = NNMz

RMz e−ΩR2

×F (−N,Mz + 1, 2ΩR2), (B3)
where F is confluent hypergeometric function and

NNMz
=

2

Mz!

√
2MzΩMz+1Γ(N +Mz + 1)

N !
. (B4)

Energies are given by

Ec.m = (2N +Mz + 1)Ω +
1

2
γMz. (B5)

In the main text, the c.m. energies are denoted
as ENMz

.

B.2. Relative motion

B.2.1. The case of noninteracting electrons

The Schrödinger equation for noninteracting elec-
trons reads
H(0)

rel Ψ
(0)
rel = E

(0)
rel Ψ

(0)
rel , (B6)

where

H(0)
rel = −∆ +

1

4
Ω2r2 +

1

2
γmz. (B7)

The normalized solutions have the form

Ψ
(0)
rel (r, ϕ) = Nnmz

e imzϕ

√
2π

G(0)
nmz

(r), (B8)

where radial amplitudes read

G(0)
nmz

(r) = Nnmzr
mz e−Ωr2/4

×F (−n,mz + 1,
1

2
Ωr2), (B9)

where

Nnmz
=

√
2−mzΩmz+1Γ(n+mz + 1)

mz!
√
n!

. (B10)

Energies are given by

E
(0)
rel = (2n+mz + 1)Ω +

1

2
γmz. (B11)

In the main text, both the analytic and approximate
relative motion energies are denoted as Enmz

.
B.2.2. The case of interacting electrons

The Schrödinger equation for the relative motion
reads
HrelΨrel = ErelΨrel, (B12)

where Hrel is given in (9). Taking into account
the wave function in the form

Ψrel(r, ϕ) =
e imzϕ

√
2π

rmz e−Ωr
2/4g(r), (B13)

we obtain

r2g′′ + (2mz + 1)rg′ − 1

εr
rg

+(Eb − Ωmz − Ω)r2g − Ωr3g′ = 0, (B14)
where Eb = Erel − 1

2γmz. Equation (B14) has
asymptotic solution

g(r) = const× rη, r →∞, (B15)
where

η =
Eb
Ω
−mz − 1 (B16)

is, in general, a real number. This asymptotic be-
havior ensures square-integrability of the wave func-
tion (B13) and determines the asymptotic boundary
condition

lim
r→∞

g′(r)

g(r)
=
η

r
. (B17)

[2pt] For any energy, we look for solutions in
the form of power series

g(r) =

∞∑
i=0

air
i, (B18)

which leads to the recurrence relation for the coef-
ficients,

i(i+ 2mz)ai − ε−1
r ai−1

+ [Eb − Ω(mz + i− 1)] ai−2 = 0, (B19)
where i = 0, 1, 2, . . . and aj ≡ 0 for j < 0. Solving
the above relation we obtain the set of coefficients
for any Eb. By imposing asymptotic boundary con-
ditions (B17) at finite distance r = ξ we can deter-
mine approximate energy eigenvalues from the non-
linear equation

∆(Eb) ≡
I∑
i=0

(i− η)ai(Eb)ξ
i = 0, (B20)

where I is a cut-off parameter. We note that the rel-
ative motion energies are given as Erel = Eb+

1
2γmz.

The accuracy of energy increases with increasing ξ
and I. However, to achieve desired accuracy, high-
precision arithmetic is required. The approximate
radial amplitudes have the form

Gnmz
(r) = Ñnmz

rmz e−Ωr
2/4

I∑
i=0

air
i, (B21)

where Ñnmz is the normalization factor and n is
the eigenvalue number. One can note that when η
becomes positive integer (η = n′), then closed-form
solutions exist. This means that the recurrence re-
lation (B19) reduces to a finite system of n′ + 1
linear equations. From the condition of linear de-
pendence of the uniform system we determine val-
ues of Ωn′ corresponding to exact solutions, for a
given n′. According to (B16) energies correspond-
ing to exact solutions are En

′

b = Ωn′(mz + n′ + 1).
Finally, the approximate expansion (B21) reduces
exactly to a polynomial (I = n′). For example, if
n′ = 1, then closed-form solutions exist for confin-
ing frequencies
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Ω1 =
1

1 + 2mz
ε−2
r . (B22)

In this case the closed-form solutions read
G1
mz

(r) = Ñmzr
mz (1 + εrΩ1r) e−Ω1r

2/4, (B23)
where Ñmz

is the normalization factor.
The above exact solutions correspond to energies

E1
b =

2 +mz

1 + 2mz
ε−2
r . (B24)

We note that the power series expansion method
has been applied in several contexts in order to solve
both the Schrödinger and the Dirac equations with
power potentials [34, 44–46].

APPENDIX C: Radial integrals

Matrix elements of the SO Hamiltonian read

�c.m = α
√

2

∞∫
0

FN ′,Mz+∆mz

[
∂FN ′,Mz+∆mz−1

∂R
−
(

1

2
γR+

Mz + ∆mz − 1

R

)
FN ′,Mz+∆mz−1

]
RdR, (C1)

Oc.m = α
√

2

∞∫
0

FN ′,Mz+∆mz+1

[
∂FN ′,Mz+∆mz

∂R
−
(

1

2
γR+

Mz + ∆mz

R

)
FN ′,Mz+∆mz

]
RdR, (C2)

�rel = −α
√

2

2
δ∆mz,1

∞∫
0

FN,Mz
FN ′,Mz+∆mz−1RdR

∞∫
0

Gnmz

[
∂Gn′m′z
∂r

−
(

1

2
γr +

m′z
r

)
Gn′m′z

]
rdr, (C3)

Nrel = −α
√

2

2
δ∆mz,−1

∞∫
0

FN,Mz
FN ′,Mz+∆mz+1RdR

∞∫
0

Gnmz

[
∂Gn′m′z
∂r

+

(
1

2
γr +

m′z
r

)
Gn′m′z

]
rdr, (C4)

where mz = 0,±2,±4, . . . , m′z = ±1,±3, . . . ,
∆mz = mz −m′z. The integrals marked by “c.m.”
are calculated analytically. The integrals marked by
“rel” are calculated analytically for the case of non-
interacting electrons and numerically for the case of
interacting electrons.
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