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Berry Phase for Spins of Relativistic Electrons
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Berry phase is a very general concept. It is applied here to families of solutions of the Dirac equation
with different values of spin. The value of the Berry phase in the spin space is given by the same
expression as was found before in the momentum space.
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1. Introduction

In this paper we return to our studies of the Berry
phase for relativistic particles. The very concept of
the Berry phase is so general that it can be intro-
duced, in principle, for every family of functions
labeled by a set of continuously varying parame-
ters. In our previous studies we identified the Berry
phase for photons [1] and for electrons [2]. In both
cases the components of the momentum {px, py, pz}
were chosen as the parameters. In the present
study we find the Berry phase when the parame-
ters {sx, sy, sz} are the components of the electron
spin vector. Of course, certain properties of a fam-
ily of wave functions become really interesting when
one finds their application to experiments. This is
why various occurrences of phases that were later
linked with the Berry phase were not met with great
interest. The essential ingredient introduced by
Berry in [3] was the connection with the adiabatic
changes of the wave function during the time evolu-
tion. The Berry phase is the additional phase that
the wave function may acquire on top of the stan-
dard dynamical phase exp (− iEt).

2. The Berry phase

We start with a general definition of the Berry
phase applicable to any quantum-mechanical sys-
tem. Michael Berry in his first paper [3] wrote:
“Let the Hamiltonian Ĥ be changed by varying
the parameters R = (X,Y, . . . ) on which it de-
pends. Then the excursion of the system be-
tween times t = 0 and t = T can be pictured
as transport round the closed path R(t) in pa-
rameter space with Hamiltonian Ĥ(R(t)) such that
Ĥ(R(0)) = Ĥ(R(T ))”. Even tough the Hamilto-
nian is essential for physical applications of these
ideas, the very concept of Berry phase can be
introduced without any reference to time evolution.

We use the Berry phase here as a purely geomet-
rical general concept. Let us suppose that we have
a quantum system whose wave functions Ψ(qi) de-
pend on some parameters q1, q2, . . . , qn. Let us de-
fine the n-dimensional vector field V (qi) according
to the formula

Vk(qi) = i

〈
Ψ(qi)

∣∣∣ ∂
∂qk

Ψ(qi)

〉
. (1)

For a family of normalized wave functions,
〈Ψ(qi)|Ψ(qi)〉 = 1, the vector field Vk(qi) is real.
Berry defined his “geometrical phase” as the follow-
ing line integral evaluated along a closed contour C
in the space of parameters:

γ(C) =

∮
C

V (qi) · dq. (2)

At this level of abstraction, the time evolution does
not play a role.

Berry considered first a three-dimensional space
of parameters “ to employ familiar vector calculus”
and this will also be our case for a spinning electron.
We can then apply the standard Stokes theorem
and convert the line integral into an integral over
the surface enclosed by the contour C,

γ(C) =

∫∫
C

(∇× V ) · dS, (3)

where dS is the surface element. We will apply
this general approach here to relativistic electrons
choosing the components of the spin {sx, sy, sz} as
the parameters.

3. Family of solutions of the Dirac equation

Every solution of the Dirac equation in free space
may be generated from an initial bispinor Ψ(r, 0) by
applying the time-evolution operator (c = 1, ~ = 1),

Ψ(r, t) = e− iHDtΨ(r, 0), (4)
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where HD is the Dirac Hamiltonian. The action
of the evolution operator can be effectively realized
when the initial condition is represented as a Fourier
integral,

Ψ(r, 0) =

∫
d3p

(2π)
3
2Ep

e ip·rΨ̃(p), (5)

where Ep =
√
m2 + p2. In a relativistic theory

it is convenient to use the invariant volume element
d3p/Ep in momentum space. The Hamiltonian in
momentum space becomes then a simple matrix,
H(p) = α · p+ βm, and we obtain:

Ψ(r, t) =

∫
d3p

(2π)3/2Ep
e− iH(p)t e ip·rΨ̃(p) (6)

The 4×4 matrix H(p) has four eigenvectors u(p,±)
and v(p,±) which belong to doubly degenerate
eigenvalues Ep and −Ep, respectively. The eigen-
vectors can be defined by the following explicit
formulas:

u(p,±) = (γµpµ +m)a±, p0 = Ep, (7)

v(p,±) = (γµpµ +m)ã±, p0 = −Ep, (8)
where a± and ã± are arbitrary, linearly indepen-
dent bispinors. The Dirac matrices are chosen in
the Weyl (chiral) representation, i.e.,

γ0 =

[
0 I

I 0

]
, γi =

[
0 −σi
σi 0

]
. (9)

The Fourier transform Ψ̃(p) expanded in the basis
of the eigenvectors is:

Ψ̃(p) =
∑
s=±

u(p, s)f(p, s) +
∑
s=±

v(p, s)g(p, s).

(10)
The amplitudes f(p, s) describe the states of

particles, while the amplitudes g(p, s) describe
the states of antiparticles. Since we are interested
here only in the states of electrons, we will assume
that g(p, s) = 0. The action of H(p) on the eigen-
vectors u(p, s) produces the eigenvalue Ep. There-
fore, the general solution of the Dirac equation de-
scribing electrons is the following superposition of
plane waves is:

Ψ(r, t) =
∑
s=±

∫
d3p

(2π)3/2Ep
u(p, s)f(p, s)e− ip·x,

(11)
where p · x = Ept− p · r.

Our aim is to describe the connection between
the spin of relativistic electrons and the Berry
phase. The detailed dependence of the amplitudes
f(p, s) on momentum should not play a signifi-
cant role. To disentangle the spin completely from
the translational degrees of freedom we will assume
that these amplitudes are equal to some spheri-
cally symmetric function f(p) multiplied by com-
plex coefficients w±. We will choose the numerical
bispinors a± in the form:

a+ = {w+, 0, 0, 0}, a− = {0, w−, 0, 0}. (12)
Thus, the family of solutions of the Dirac equation
which will be analyzed here is:

Ψ(r, t) =

∫
d3p

(2π)3/2Ep
f(p) exp (− ip · x)

×


mw+

mw−(√
m2 + p2 − pz

)
w+ − (px − ip−)w−

− (px + ipy)w+ −
(√

m2 + p2 + pz

)
w−

 .
(13)

In the next Section we will determine the spin char-
acteristics of these solutions.

4. The spin vector

The information about the spin of the electron is
carried by the coefficients w±. In order to identify
this information we will evaluate the expectation
value in the state (13) of the relativistic spin
operator σµν ,

σµν =
i

2
(γµγν − γνγµ) , (14)

〈σµν〉 =

∫
dr3Ψ̄(r, t)σµνΨ(r, t)∫

dr3Ψ̄(r, t)Ψ(r, t)
. (15)

The spatial components of this tensor
ŝ = {σ23, σ31, σ12} describe the ordinary spin.
The substitution of (11) into (15), after the use
of the Fourier representation, gives a remarkably
simple result for ŝ,

〈ŝ〉 = {sx, sy, sz} =
w†σw

w†w
, (16)

where {σx, σy, σz} are ordinary Pauli matrices and
the Pauli spinor w is built from our two complex
coefficients, w = {w+, w−}. There is no trace of
the function f(p) in this formula. In this simple
case the spin is completely decoupled from the
translational degrees of freedom.

In order to use directly the prescription for
the Berry phase in its simplest form, we invert the
relation (16) and we express w as a function of
{sx, sy, sz}. Since {sx, sy, sz} is a unit vector it can
be represent in spherical coordinates in the form:

sx = cos(φ) sin(θ), sy = sin(φ) sin(θ),

sz = cos(θ). (17)
In turn, a normalized spinor w which reproduces
this vector in (16) is:
w = {cos(θ/2)e− iφ/2, sin(θ/2)e iφ/2}. (18)

In Cartesian coordinates, this formula reads:

w =

 √1 + sz
s

(√
1 + sx

s⊥
− i
√

1− sx
s⊥

)
√

1− sx
s

(√
1 + sz

s⊥
+ i
√

1− sx
s⊥

)  , (19)

where s =
√
s2x + s2y + s2z and s⊥ =

√
s2x + s2y.

This formula forw holds only for sy > 0. For sy < 0
the spinorw must be replaced by its complex conju-
gate. After these preparations we are well prepared
to tackle the problem of the Berry phase for rela-
tivistic electrons.
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5. The Berry phase and the spin
of relativistic electrons

The family of solutions of the Dirac equations
parametrized by the components of the spin vec-
tor is obtained by substituting the expressions (19)
into (13). We may now calculate the Berry
phase following the procedures outlined in Sect. 2.
The evaluation of the scalar product (1) is again
most easily done with the use of the Fourier repre-
sentation.

In order to generate a set of Dirac wave functions
that depend on the the set of three parameters
we substitute the spinor w expressed in terms
of the spin vector s in (19) into (13). Next,
we calculate the vector field V according to
the definition (1) where Ψ(qi) now is our solution
of the Dirac equation. After tedious but straight-
forward calculations we obtain:

V =
{−sysz, sxsz, 0}

(s2x + s2y)
√
s2x + s2y + s2z

, (20)

and the final result is:

∇× V = − {sx, sy, sz}
(s2x + s2y + s2z)

3/2
. (21)

This expression has the same form as the formulas
that were obtained in [1, 2] for photons and elec-
trons except that the momentum is now replaced
by the spin. The value of the Berry phase (3)
is equal to the solid angle spanned by the contour C.

To observe this manifestation of the Berry phase one
has to force the electron spin to follow the path C.
Such an experiment is analogous to the one with
photons where the photons were forced to follow
the path along the helical fiber [4]. In the case of
electrons the role of the helical fiber is played by
the magnetic field acting on the magnetic moment
of the electron.

Our results may sound disappointing because
the expression (16) for the Dirac electron may be
obtained in the nonrelativistic quantum mechanics
based on the Pauli-Schrödinger equation. However,
it is perhaps worth noticing, that in the simple case,
when the spin is decoupled from the center of mass
motion, the relativistic theory and the nonrelativis-
tic one fully agree.
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