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The article presents an analysis of the possibilities of using the Krischer model to determine the effective
thermal conductivity of steel bar bundles for which the solid-phase is low-carbon steel and the gas-phase
is air. The results of experimental research were used for this purpose. The analysis was carried out
for the temperature range of 0–800 ◦C. Two solutions of the Krischer model were considered, full and
simplified. In the simplified solution, it was assumed that the value of the weighting parameter f
depends only on the diameter of the bars. It was shown that the results of the simplified solution differ
from the results of the full solution by about 5%. This result shows, that from the point of view of
industrial practice, the simplified solution of the Krischer model can be used to determine the effective
thermal conductivity of packed bundles of carbon steel rods.
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1. Introduction

Bar bundles are one example of a porous charge
that is encountered during the heat treatment of
steel products [1]. This charge has a heterogeneous,
two-phase structure characterized by the staggered
arrangement of the bars. For this reason, the value
that describes the ability of a bundle to heat trans-
fer is the effective thermal conductivity kef [2, 3].
Knowledge of the value of this parameter is neces-
sary to correctly determine the heating time of heat
treated bars. A number of analytical models have
been proposed to determine the effective thermal
conductivity of two-phase media. The most com-
monly used in this area are five following structural
models: the Series, Parallel, Maxwell-Eucken (two
forms) and Effective Medium Theory (EMT) [4, 5].
These models determine the value of the kef coeffi-
cient of a given two-phase medium on the basis of
thermal conductivities ki and volume fractions vi of
its individual phases. For this reason listed modes
are referred as “rigid” models. It should be noted
that Series and Parallel models define the maximum
(upper bound) and minimal (lower bound) values
for the effective thermal conductivity of any porous
material.

As demonstrated, rigid models are not suitable
for determining the effective thermal conductivity
of a porous charge [6, 7]. Greater possibilities are
offered by the “flexible” models that next to the con-
ductivities ki and volume fractions vi contain an ad-
ditional parameters. One of the most commonly
used models of this type is the Krischer model, that
is a weighted harmonic mean of the Series and Par-
allel models [8]:

kef =

(
1 + f

kef−P
+

f

kef−S

)−1

, (1)

where kef−P and kef−S are the effective thermal
conductivity predicted by the Parallel and Series
model, and f is the weighting parameter with
values ranging from 0 to 1. If f = 0, Krischer
model is reduced to the Parallel model, while when
f = 1, Krischer model is reduced to the Series
model. Thus, by changing the value of the pa-
rameter f , it is possible to obtain the value of
the coefficient kef within the limits set by Serial and
Parallel models.

The article presents an analysis of the possibilities
of using the Krischer model to determine the effec-
tive thermal conductivity of steel bar bundles. Dif-
ferent bar diameters were taken into account. It was
also assumed that the thermal conductivity of indi-
vidual phases of the considered charge in question
changes as a function of temperature.

2. Analysis and modelling

For the analysis of the problem considered in
the article, the results of experimental research of
the effective thermal conductivity were used [6].
The measurement results showed that the effective
thermal conductivity of the samples rises linearly
with temperature. Therefore, the measurement re-
sults for individual samples were approximated us-
ing the least squares method by means of linear re-
gression equations:

kef = B1 +B2t. (2)
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TABLE I

The values of ks, kg coefficients and ks/kg ratio.

Temp. [ ◦C] ks kg ks/kg
0 51.3 0.024 2137

200 47.7 0.039 1225
400 42.1 0.051 816
600 35.1 0.062 567
800 27.3 0.069 390

Temperature changes of thermal conductivity of
solid phase ks and gas phase kg for the considered
charge are described by the following equations [9]:

ks = 1.2× 10−8t3 − 3.2× 10−5t2

−1.2× 10−2t+ 51.3, (3)

kg = −2.88× 10−8t2 + 8.05× 10−5t+ 0.024. (4)
Table I summarizes the values of the ks and kg

coefficients for selected temperatures and the val-
ues of the ks/kg ratio. As can be seen, the thermal
conductivity values of individual bundle phases are
very different from each other, showing a different
tendency of change in the function of temperature.
In the lower temperature bound, the thermal con-
ductivity of the solid phase is over two thousand
times that of the gas phase, while in the upper
bound, this ratio drops to 390.

Using (2)–(4), it is possible to calculate
the change of weighting parameter f from
the Krischer model for the considered temperature
range. The appropriate equation is obtained by
transforming the relationship (1) into:

f =

(
kef−P

kef
− 1

)(
kef−P

kef−S
− 1

)−1

, (5)

The results of calculations of the parameter f ob-
tained for the analyzed bar bundles are presented
in Fig. 1. The value of this parameter decreases as
the diameter of the bars increases. While, the in-
crease in temperature initially increases the f value,
which takes place to a temperature of about 400 ◦C.
For higher temperatures, a decrease in f value is
observed. The curves illustrating the temperature
changes of the parameter f can be described by
the following polynomial:

f = C1t
2 + C2t+ C3. (6)

The minimum, mean and maximum values of
the parameter f obtained for individual bar diam-
eters are presented in Table II.

The presented results show that the Krischer
model allows very precisely adjusting the kef coeffi-
cient of steel bar bundles. However, achieving such
compliance requires careful adjustment of the value
of the parameter f . This adjustment must take
into account both the influence of temperature and
the diameter of the bars, which is unfortunately not
easy. The solution obtained with this adjustment
was called the full solution.

Fig. 1. Values of the parameter f depending on
the temperature and bar diameter db.

Fig. 2. Effective thermal conductivity of steel
bar bundles calculated for constant values of
parameter f .

TABLE II

Minimum, mean and maximum values of the param-
eter f depending on the bar diameter.

db [mm] Min. Mean Max.
10 0.1461 0.1948 0.2091
20 0.0916 0.1099 0.1169
30 0.0702 0.0819 0.0877
40 0.0572 0.0716 0.0716

Due to the complexity of adjustment the correct
value of f , it was decided to check the results of
the Krischer model assuming that the value of this
parameter depends only on the diameter of the bars.
For this purpose, calculations were made assuming
constant values of f for individual bar diameters —
for which the mean values from Table II were used.
This solution was called a simplified one.

The effective thermal conductivity of bar bun-
dles calculated in a simplified manner is shown in
Fig. 2. In this case, the waveforms change of the kef
parameter as a function of temperature are not
straight, as in Fig. 2. Effective thermal conductivity
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Fig. 3. Calculation results of the reduced differ-
ence dredkef .

TABLE III

Mean absolute values of the dredkef parameter.

db [mm] 10 20 30 40
dredkef [%] 6.61 4.54 4.72 5.42

increases as a function of temperature, however,
these changes are less and less intense with increas-
ing temperature.

To better visualize the divergence of results
obtained for a full and simplified solution, the re-
duced difference was calculated:

dredkef =
kef−f − kef−s

kef−f
× 100%, (7)

The calculation results of the dredkef parame-
ter are presented in Fig. 3. For the most part of
the temperature range, this parameter value does
not exceed ±10%. Higher values occur only for
10 and 20 mm bar. For 10 mm bars, the max-
imum value of dredkef occurs at 0 ◦C, and it is
less than 25%, but at 120 ◦C it falls below 10%.
In turn, for 20 mm bars the maximum value was
16% (for t = 0 ◦C), however, after exceeding 50 ◦C
its value drops below 10%. Exceeding 10% is still
present for 40 mm bars at temperature above 730 ◦C
with a maximum value of 14%. Mean absolute val-
ues of the dredkef parameter obtained for individual
bar diameters are summarized in Table III. As can
be seen, the values are much less than 10%, and for
bars with a diameter of 20 mm and 30 mm even
below 5%.

The results summarized in Table III show that
for the industrial purposes, the Krischer model
with a simplified solution can be used to deter-
mine the effective thermal conductivity of low car-
bon steel bar bundles.

In order to make this solution more general,
it was decided to determine a function approximat-
ing the value of the parameter f for any diameter
of bars in the range from 10 to 40 mm. For this
purpose, the mean values of the f parameter were

used, presented in Table II. The equation that
best matches the calculation results to these values
(R2 = 0.992) has the form of a power function:

f = 1.034d−0.736
b , (8)

3. Conclusions

The Krischer model is a relatively simple model of
effective thermal conductivity, which provides flexi-
bility in calculation by using the weighting parame-
ter f . The analyzes presented in the article indicate
that the model can be used to determine the ef-
fective thermal conductivity of steel bar bundles.
A full solution in which the weighting parameter
changes as a function of the charge temperature and
the diameter of the bars is difficult to obtain. A sim-
plified solution is much more convenient, in which
the f changes only as a function of bar diameter.
Comparing our results with the experimental stud-
ies which are the most reliable source of information
on the value of the kef coefficient, it was determined
that for the considered charge, the changes of the f
parameter in the function of dp can be described
quite accurately by a power equation. The values
of kef calculated in this way differ from the value of
the full solution by ≈ 5%. From the point of view
of industrial practice, such accuracy are completely
satisfactory.
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