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In this paper the problem of non-linear vibrations of the beam was considered. A system with a mass
element mounted at the end of the structure with a mass much larger than the mass of the beam
was under consideration. This element during transverse vibrations generates additional longitudinal
force associated with its inertia. The occurrence of this force results in the appearance of a non-
linear relationship between the amplitude of vibration of the system and its natural frequency. The
boundary problem of non-linear vibrations was formulated on the basis of the Hamilton principle,
taking into account the Bernoulli-Euler theory and the non-linear relationship between deformation
and displacement (von Karman theory). Numerical simulations were carried out taking into account
the impact of longitudinal inertia of the mass element on the non-linear component of natural frequency
at different amplitudes of beam vibrations.
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1. Introduction

In the case of mechanical structures exposed to
periodically changing forces, an important element
in the design process is the analysis of natural vibra-
tions. Knowledge of the natural frequency allows
one to make the necessary modifications to avoid
adverse resonance phenomena. The increase in vi-
bration amplitude (in the case of resonance) would
cause a significant increase in wear and even struc-
tural damage.

Columns and beams are the basic mechanical sys-
tems for which the natural vibration analysis is
carried out. In the case of columns, the problem
of natural vibrations is related to the stability of
the system. The columns subjected to the classic
Euler load (load does not change the direction of
operation during deflection) are divergent systems.
In those kinds of systems, the zero value of the first
natural frequency corresponds to the critical force.
In literature one can find many publications corre-
sponding to the subject of column and beam vi-
brations [1–11]. The considerations take into ac-
count a number of properties of these systems,
including geometric parameters, type of mount-
ings and method of loading. Research is also car-
ried out using various theories of problem descrip-
tion (e.g., Euler, Timoshenko) or methods of their
solutions. The analysis of the problem of free vi-
brations and stability of double tapered columns
with elastic foundation and tip mass has been made
in [2] reflecting the theory of Bernoulli-Euler and
Timoshenko. The impact of loading head parame-
ters on vibrations and column stability with dam-
age by taking into account the specific load is

considered in [3]. The problem of free vibration of
the column by taking into account the Euler com-
pression load and the impact of the local heat source
is presented in [4]. In turn, free and forced vi-
brations of Timoshenko beams are analysed in [5],
described by single difference equation at differ-
ent boundary conditions. Publication [6] covers
the matter of transverse vibrations of a beam with
mass at free end. The studied system uses addi-
tional support at various distances from the rigid
mounting. Free vibrations of beams with an inter-
mediate sliding connection joint connected with a
mass-spring system is also considered [7]. There,
two types of additional systems are adopted: a har-
monic oscillator with one and two degrees of free-
dom. The case of free and forced vibration of ge-
ometrically linear and non-linear beams when tak-
ing into account the occurrence of multi-cracks, is
considered in [8]. Further, the analysis of forced
vibrations of composite beams has been performed
in [9] using the variable separation method. In fact,
number of numerical calculations are carried out
for various slenderness ratio and system mount-
ings to validate the proposed method. The results
are compared with exact elasticity solution and
the FEM method. Publication [10] covers the anal-
ysis of free vibration problems perfectly clamped-
free beams with additional stepwise eccentric dis-
tributed masses. Studies of free vibrations of multi-
stepped beams are made [11] with the Adomian de-
composition method (ADM). It is shown that ADM
offers an accurate and effective method of free vi-
bration analysis of multiple-stepped beams with ar-
bitrary boundary conditions.
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We analyse the problem of free vibrations of dou-
ble hinged beam system connected to the mass ele-
ment M . This kind of system can represent a pis-
ton rod in a hydraulic cylinder, used in executive
devices with a great mass. Hydraulic cylinder oper-
ates in a horizontal plane and its end is connected
to latch. In this case, the longitudinal inertia of
the mass M has a significant impact on nonlin-
ear vibrations of the beam. Such a formulation
of the problem was not analysed in other works.
In the problem formulated in this way, inertia gen-
erates additional forces in the case of vibrations,
which introduce into the system nonlinearities de-
pending on the vibration amplitude. Numerical
simulations were carried out taking into account
the influence of mass element inertia on the free
vibrations of the system. Calculations were carried
out for different levels of amplitudes.

2. Boundary problem

The system presented in Fig. 1 was considered.
It is an articulated beam of length l, at the end of
which is an element with mass M . The boundary
problem was presented using dimensionless quanti-
ties:

ξ =
x

l
, τ = ωt, θ =

Al2

J
,

w (ξ, τ) =
W (x, t)

l
, u (ξ, τ) =

U (x, t)

l
,

k2 (τ) =
S (t) l2

EJ
, Ω2 =

ω2 (ρA) l4

EJ
, (1)

where W (x, t) — displacement of the system in
transverse direction, U(x, t) — displacement of
the system in longitudinal direction, S(t) — in-
ternal force, ω — linear free vibrations frequency,
ρ — density of the beam, A— cross-section area of
the beam, EJ — flexural rigidity.

The formulation of the issue of natural vibra-
tions was carried out using the Hamilton principle.
After carrying out the necessary mathematical
operations, the equations of motion of the system
in the transverse (2) and longitudinal (3) directions
are obtained:

∂4w (ξ, τ)

∂ξ4
+ Ω2 ∂

2w (ξ, τ)

∂τ2
= 0, (2)

∂

∂ξ

[
∂u (ξ, τ)

∂ξ
+

1

2

(
∂w (ξ, τ)

∂ξ

)2
]

= 0. (3)

Fig. 1. Beam with the mass element.

After double integration, (3) gives:

u (ξ, τ) =
−k2 (τ) ξ

θ
− 1

2

1∫
0

(
∂w (ξ, τ)

∂ξ

)2

dξ. (4)

The boundary conditions of the considered system
are as follows:

w (0, τ) = 0, w (1, τ) = 0,

∂2w (ξ, τ)

∂ξ2

∣∣∣∣
ξ=0

= 0,
∂2w (ξ, τ)

∂ξ2

∣∣∣∣
ξ=1

= 0,

k2 (τ)EJ

l2
−Mω2l

∂2u (ξ, τ)

∂τ2

∣∣∣∣
ξ=1

= 0. (5)

Due to non-linearity, the small parameter method
is used to finally formulate the vibration prob-
lem. It consists in developing all nonlinear terms
of the obtained equations into the power series
of the small parameter of vibration amplitude ε.
These series are as follows:

w (ξ, τ) = εw1 (ξ, τ) + ε3w3 (ξ, τ) + . . .

u (ξ, τ) = +ε2u2 (ξ, τ) + . . .

k2 (τ) = ε2k22 (τ) + . . .

Ω2 = Ω2
0 + ε2Ω2

2 + . . .

ω2 = ω2
0 + ε2ω2

2 + . . . (6)
where:

w1 (ξ, τ) =
(1)

w1 (ξ) cos(τ),

w3 (ξ, τ) =
(1)

w3 (ξ) cos(τ) +
(3)

w3 (ξ) cos(3τ),

u2 (ξ, τ) =
(2)

u 2 (ξ) cos(2τ),

k22 (τ) =
(2)

k22 cos(2τ). (7)

Power series (6) (considering (7)) are substituted
for differential equations and boundary conditions.
After grouping the appropriate quantities relative
to the powers of the small parameter, we obtain
sequences of differential equations and the corre-
sponding boundary conditions. On their basis,
the following parameters can be determined:

• linear component of the natural frequency ω,

• non-linear component of internal force
(2)

k22,
• non-linear component of natural vibrations
frequency ω2

2 .

3. Results of numerical simulations

The results of numerical calculations were pre-
sented using dimensionless parameters:

Ω∗ =
√

Ω2
0 + ε2Ω2

2, ζA =
amp

r
,

where Ω∗ — parameter of the first natural vibra-
tion frequency, taking into account linear Ω0 and
non-linear Ω2 parameters of the natural frequency,
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Fig. 2. Relation between natural frequency pa-
rameter and mass of the element for (a) l = 1 m
and (b) l = 1.2 m.

ζA — vibration amplitude parameter, amp — am-
plitude of system vibrations, r— radius of gyration.

The calculations were carried out for two differ-
ent lengths of the beam l = 1 m and l = 1.2 m.
Figure 2 presents the relationships between the nat-
ural vibration frequency parameter Ω∗ and the mass
of the additional element. Horizontal curves num-
ber 1 correspond to the zero value of the small pa-
rameter ε. It represents only the liner component of
the free vibrations frequency parameter. The curves
marked as 〈2 . . . 6〉 refer to subsequent values of
the system vibration amplitude.

Based on the obtained results, it can be stated
that as the mass of the element associated with
the sliding support increases, the value of the sys-
tem’s own frequency parameter decreases. The de-
pendencies Ω∗(M) shown on the graph are linear.
It has also been observed that the frequency de-
creases as the vibration amplitude increases. There-
fore, by increasing the amplitude of vibrations,
the longitudinal inertia of the mass element occur-
ring at the sliding end of the beam reduces the fre-
quency of the system’s own vibrations. The level of
influence of parameters on the vibration frequency
is much greater in the case of systems, characterised
by smaller value of the system length. Comparing
the relations in Fig. 2a and 2b it can be stated
that a small increase in the beam length (from
l = 1 m to l = 1.2 m) causes a great decrease
in the value of the vibration frequency parameter.

Considering the vibrations with the highest ampli-
tude value (ζA = 2.5), with a mass M = 500 kg,
the reduction in system length by 0.2 m resulted
in a decrease in the natural frequency from around
Ω∗ = 65 to Ω∗ = 20.

4. Conclusions

In this paper, the problem of nonlinear beam vi-
brations has been formulated, taking into account
the inertia of the mass element located at one of
the ends of the system (at the end which is con-
nected with the sliding support). It has been stated
that the vibration amplitude and longitudinal in-
ertia of the mass M have significant impact on
the nonlinear vibrations of the entire structure.
The increase in the mass of the element M and
the amplitude of the vibrations result in a decrease
in the natural frequency of the beam. It has also
been shown that systems with shorter lengths are
much more susceptible to change the above parame-
ters. Analysis of the beam-mass system presented in
this work can be developed in the future, in partic-
ular of the impact analysis of the rigidity of the con-
nection between the piston rod and the cylinder or
latch system.
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