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In the paper, all possible transmissions of quasi one-dimensional structures permutations made of
glass and epoxy resin surrounded by water for the frequency range of acoustic waves was determined
using the Transfer Matrix Method (TMM) algorithm. On their basis, the phase space of solutions for
minimizing the objective function for the genetic algorithm was determined.This space consisted of the
transmission integral (energy reduction of propagating wave) and the integral of the absolute value of
the transmission functions derivative (elimination of high transmission peaks with a small half width).
The paper demonstrates the existence of bandgaps for the analyzed multilayer structures (waves with
characteristic frequencies do not propagate in the structure) and demonstrates the existence of local
minima of solution spaces with low probability of finding optimal structure by the genetic algorithm.
State space search for various initial values of the optimization algorithm was also analyzed.
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1. Introduction

Phononic structures are composites in which me-
chanical waves of given frequencies do not propa-
gate, this phenomenon is called the occurrence of
phononic bandgap (PhBG) [1]. Phononic structures
are used as acoustic waveguides, acoustic/elastic fil-
ters, noise control or can be used for demultiplex-
ing [1–4]. How a mechanical wave propagates in
a phononic crystal depends on the properties of the
materials used but it is most influenced by the spa-
tial distribution of the materials [4, 5]. Depending
on the structure of the phononic crystals, they can
be divided into quasi one-dimensional (multilayer
systems), two-dimensional or three-dimensional [4].
In many works the influence of layer distribution on
the phononic properties of the analyzed structures
has been shown [6, 7]. In order to obtain the desired
structure properties, optimization algorithms with
a properly selected objective function are used [8].

2. Mathematical models

The work analyzes the distribution in the phase
space the constituents of the objective function so
that the mechanical wave transmission in a given
frequency area is minimized, as well as the elimina-
tion of narrow high transmission bands. The ge-
netic algorithm (GA) was used as the optimiza-
tion algorithm, and the transmission of the analyzed
structures in the frequency domain was determined
by the Transfer Matrix Method (TMM) algorithm.
The influence of various initial conditions on search-
ing the space of solution states was also analyzed.

2.1. Transfer Matrix Method

Mechanical wave propagation in phononic struc-
tures can be described using a matrix equation[

p+in
p−in

]
M =

[
p+out

0

]
, (1)

where p+in is the amplitude of the wave incident on
the structure p−in is the amplitude of the reflected
wave, and p+out is the amplitude of the wave prop-
agating behind the structure. The M matrix de-
pends on the properties of the materials forming
the structure and their distribution. It consists of
wave propagation matrix Γi inside layer i and trans-
mission matrix Φi,i+1 between layers i and i + 1.
The in and out are the materials surrounding the
multilayer structure. The characteristic matrix con-
sisting of in layers was determined by

M = Φin,1

[
n−1∏
i=1

ΓiΦi,i+1

]
ΓnΦn,out (2)

Transmission for a given frequency f is determined
from the first word of the characteristic matrix main
diagonal M11

Tf =

∣∣∣∣ 1

M11

∣∣∣∣2 . (3)

The propagation matrix Γi is determined by the fre-
quency f , phase velocity of mechanical wave vi,
the thickness of a given layer di and takes the form

Γi =

[
e
i 2πf

di
vi 0

0 e
− i 2πf

di
vi

]
(4)
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Fig. 1. Histograms of the objective function component distribution for different amounts of layers n in the
structure.

The transmission matrix Φi,i+1 between layers i and
i+ 1 is given by

Φi,i+1 =
1

ti,i+1

[
1 ri,i+1

ri,i+1 1

]
(5)

where

ri,i+1 =
Zi+1 − Zi
Zi+1 + Zi

, (6)

and

ti,i+1 =
2Zi+1

Zi+1 + Zi
. (7)

The ti,i+1 and ri,i+1 are the transmission and re-
flectance coefficients at the boundaries of layers i
and i+ 1, respectively. The acoustic impedance Zi
for layer i is determined by the medium phase ve-
locity vi and its mass density ρi, and it is defined
as Zi = viρi.

2.1. Genetic algorithm
The genetic algorithm is used to design the dis-

tribution of layers in a quasi-one-dimensional struc-
ture so that the desired mechanical wave propaga-
tion properties are obtained. This algorithm works
as follows:

1. Initialization.
2. The random selection of the first population

of genotypes for analysis.
3. Determination of transmission for table of

structures using TMM.
4. Determining the components of the objective

function and calculating its value,
5. Sorting the genotype table by objective func-

tion.
6. Leaving the two most favorable structures

unchanged, and mixing the remaining geno-
types, where the probability of mixing de-
pends on the quality of the structures.

7. Gene mutation of the entire population with
a given probability.

8. If the limit of loop runs has been reached,
the analysis is terminated, otherwise return
to point III.

The selection of the objective function that de-
termines the algorithm’s course is extremely im-
portant. The objective functions FC used con-
sists of the product of two normalized functions
FI and FDI . The normalization process affects
the equal participation of both functions in the ob-
jective function, namely

FC = ||FI || ||FDI ||. (8)

This is beneficial for the algorithm in comparing
the quality of functions within one population and
during gene mixing. However, comparing structure
quality across populations should be done without
normalizing according to

F ′C = FIFDI , (9)
where functions FI and FDI are used to analyze
the space of solutions. They are defined as

FI =

fmax∫
fmin

T (f) df, (10)

FDI =

fmax∫
fmin

∣∣∣∣∂T (f)

∂f

∣∣∣∣ df (11)

Thus, FI is responsible for minimizing transmis-
sion in a specific frequency range, while FDI allows
the elimination of high transmission narrow peaks.

3. Research

The analysis was carried out for the frequency
range up to 20 kHz. In simulation, glass was
adopted as material A (with vA = 4000 m/s, and
ρA = 3880 kg/m3), while epoxy resins as mate-
rial B (with vB = 2535 m/s and ρB = 1180 kg/m3).
The structure was surrounded by water (vw =
1500 m/s, ρw = 1000 kg/m3) [9, 10]. The thickness
of the layers was 1 cm. The analysis was carried
out for the number of layers n in the range from 3
to 12. All possible distributions of A and B materi-
als were determined and the transmission of acous-
tic waves was calculated for them. The values of FI
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Fig. 2. Impact of the number of layers on the max-
imum and minimum values of the objective function
components.

Fig. 3. Transmission of structures with the small-
est FI for subsequent numbers of layers n
from 3 to 12.

and FDI parameters were determined and collected
on the histogram diagrams of the phase space solu-
tions (Fig. 1). The minimum and maximum values
of the components of the objective function are col-
lected in Fig. 2.

Figure 3 presents transmission charts for struc-
tures with the lowest value of the objective func-
tion for a given number of layers. The subscript in
the structure record corresponds to the number of
times the layer is repeated. Then, using GA, space
search of solutions for 20 individuals in the pop-
ulation with 1% mutation chance was introduced
(Fig. 4). At each step, the 2 best structures were
left, and the 2 weakest were replaced by random
ones. The 2.2 percent of the state space was
searched.

Fig. 4. Histograms of the objective function val-
ues for structures analyzed during the operation of
the genetic algorithm for (a) all analyzed layer dis-
tributions and (b) unique structures.

4. Conclusions

Increasing the number of layers in the struc-
ture resulted in the occurrence of more narrow
peaks with high transmission (increase in FDI).
The distribution of the components of the objec-
tive function did not correspond to the Gaussian
distribution. For the number of layers from 6 to 11
there was a band gap in the range from 10 kHz
to 15 kHz, while for 12 layers a broad peak was
observed for the frequency of 11 kHz and the trans-
mission level of 25%. Based on the analysis of the
behaviour of the genetic algorithm, it would be ad-
visable to increase the number of random structures
added to the population. This would ensure greater
coverage of state spaces and avoid local minima of
solution spaces.
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