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Coupled Vibration of Cracked Frame with Damping
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This paper presents an analytical study of vibrations of the cracked discrete-continuous system with
viscous damping. The influence of viscous external, internal and structural damping on axial and lateral
vibrations of cracked frame was investigated. The adopted model was Bernoulli-Euler beam model where
the virtual work of non-conservative forces comes from external, internal and constructional damping of
supports. The obtained results allow to determine some geometrical parameters at which the amplitude
decay factor is the highest. The parameters identified on the basis of study are the depth and location
of the crack, and the range of values of the constructional damping coefficient.
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1. Introduction

Cracks are structural defects that modify the dy-
namic behaviour of the construction and can re-
duce the efficiency of the system/machine mainly
due to their influence on object vibrations. A math-
ematical model of real systems which takes into ac-
count the possible occurrence of cracks and the dif-
ferent source of energy dissipation (damping phe-
nomenon), helps to determinate the dynamic prop-
erties of real systems and identification of its
damage.

The dynamic analysis of frame structures was
presented in [1–5]. The study of [1] and [2]
concerned on constructional damped vibration of
Γ-frame and impact of complex damping on vi-
bration amplitude of the portal frame, respec-
tively. The formulation and solution of the prob-
lem of transverse damped vibrations of Γ-frame
with crack was presented in [3]. In that paper,
the influence of crack localization and values of
constructional and internal damping on complex
eigenvalue of the frame were examined. The non-
invasive method of cracks identification is proposed
in [4]. The method based on the transverse open
single-sided crack which is modelled using rota-
tional spring (calculated stiffness) and the force —
displacement relationship is described by local flex-
ibility matrix. The problem of instability three
members slender system with crack in the inter-
nal rod based of a static criterion of instability was
presented in work [5]. Analysed system composed
of several elements was subjected to Euler’s load,
while the internal crack size was reflected by rota-
tional spring.

Author‘s previous studies concerned the anal-
ysis of various frame shapes with one kind of

damping, selected vibrations or single cracked struc-
ture. The influence of material and external damp-
ing on vibrations of frame with and without dam-
age is still the field to research. The present pa-
per examined the axial and lateral vibrations of
frame with 2 one-side cracks by considering the in-
fluence of viscous complex damping on system. The
range of values of the constructional damping coef-
ficient, as well as the depth and location of cracks,
are the parameters identified on the basis of this
study. It turns out, that the various values of damp-
ing coefficients, cracks depth and cracks localization
change quantitative and qualitative the amplitude
of decay factor and damped frequency.

2. Boundary problem

To formulated the boundary problem of ax-
ial and lateral vibrations of the system, we used
the Bernoulli-Euler beam model where the vir-
tual work of non-conservative forces come from
complex damping: external damping of medium
surrounding the system, internal damping of vis-
coelastic material of the model, and construc-
tional damping of supports. In the adopted model
(see Fig. 1) the stiffness of spring Km was used
to model the crack. In the local flexibility ma-
trix, the material compliance of crack was generated
by the rotational rigidity using the form as in [4].
Namely

Km =
1

cm
, (1)

where

cm = 5.346
h

EnJn
Im

(am
h

)
, (2)

and
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In the above formulas one has compliance cm,
dimensionless local compliance function Im [4],
a crack depth am, and a beam height h,
where m = 1, 2.

The boundary problem was formulated on
the basis on Hamilton’s principle, i.e.,

δ

t2∫
t1

(T − V )dt+

t2∫
t1

δWN dt = 0. (4)

In turn, kinetic (T ) and potential (V ) energies,
and virtual work of non-conservative forces (δWN )
were expressed as:

T =
1

2

5∑
n=1

ρnFn

2

ln∫
0

(
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∂t

)2

dxn, (5)
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ln∫
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(6)

δWN =
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n=1
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δ
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It should be read that Wn(x, t) — transverse dis-
placements, Un(x, t) — longitudinal displacements,
En — Young’s modulus, E∗

n — material viscos-
ity, Fn — cross-sections, Jn — moment of inertia
in frame cross-sections, ln — length of the beam,
LC — total length of frame, CR – constructional
viscous damping, CE — external viscous damping,
ρn – material densities, xn — spatial coordinate,
t – time, and n = 1, 2, . . . 5.

Fig. 1. Scheme of the examined system.

The differential equations of motion in the ax-
ial (8) and lateral direction (9) had the following
form:

JnEn
∂4Wn(xn, t)

∂x4n
+ Jn (En + E∗

n)
∂5Wn(xn, t)

∂x4n∂t

+CE
∂Wn(xn, t)

∂t
+ ρnFn

∂2Wn(xn, t)

∂t2
= 0, (8)

−FnEn
∂2Un(xn, t)

∂x2n
− Fn (En + E∗

n)
∂3Un(xn, t)

∂x2n∂t

+ρnFn
∂2Un(xn, t)

∂t2
= 0. (9)

The boundary problem of the free vibrations of
the considered non-conservative (due to damping)
system was solved numerically for the eigen-
values ω∗. The complex numbers ω∗ represent
the damped vibration frequencies Re(ω∗) and
amplitude decay factor Im(ω∗), i.e.,

ω∗ = Re (ω∗)± i Im (ω∗) . (10)
The dimensionless parameters introduced in
the calculation were

η =
E∗

n

hEn
, ν =

CeL
3
C

d
,

µ =
cR
d
, L =

(l1 + l2)

l3
, (11)
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where
LC = l1 + l2 + l3 + l4 + l5,

h2 =
ρnAn

EnJn
L4
C , d2 = L2

C(ρnAnEnJn). (12)

Geometrical and material data were set accord-
ingly: lengths l1 = 1–4 m, l2 = 2 m, l3 = 1–4 m, di-
ameter of beams Dn = 0.05 m, Young modulus
En = 2.1 × 1011 Pa, external damping coefficient
ν = 0.49× 10−6 (or CE = 1.0041× 10−3 N s/m2 of
still fresh water [6, 7]), internal damping coefficient
η = 0–2 (for homogeneous structural steel [6–8]),
constructional damping coefficient µ = 0–2, mate-
rial density ρn = 7.7× 103 kg/m3.

3. Results

The calculations results of this paper are pre-
sented in Figs. 2–7. The relationships of the real
Re(ω∗) and the imaginary Im(ω∗) parts of the first
eigenvalue of the frame, for different locations of
first L1 and second L2 crack together with their
depth a1/h = a2/h = a/h, are shown in Figs. 2
and 3, respectively. The values of damping coeffi-
cients are η = 0.002, ν = 10−5 and µ = 1.

The propagation of functions described
the damped frequency and amplitude decay
factor of first eigenvalue with simultaneous change
of the first crack depth and crack location, for
constant values of a2/h and L2 are presented
in Fig. 4. Analogical dependencies for second crack
are presented in Fig. 5. The values of damping
coefficients were η = 0.002, ν = 10−5 and µ = 1.
Substantial changes can be observed especially in
Re(ω∗) and Im(ω∗) for different location and depth
of the first crack. In both Figs. 4 and 5 one can
also observe the areas in the progression of curves
which are non-monotonic.

Figures 6 and 7 present the dependence of the real
and the imaginary part of the first eigenvalue of
frame on changes in constructional damping coef-
ficient µ. The values of coefficients are ν = 10−5,
η = {0, 0.002, 00.4} and selected values of cracks
depth and location. Main changes can be observed
in value of damped frequency and amplitude decay
factor of the system with changes the value of con-
structional damping µ.

Fig. 2. The relationship between Re(ω∗) and
Im(ω∗) of the first eigenvalue of the frame and
cracks depth a/h.

Fig. 3. The relationship between Re(ω∗) and
Im(ω∗) of the first eigenvalue of the frame and
cracks location L.

Fig. 4. The dependency of the first eigenvalue of
frame on the first crack depth a1/h and its localiza-
tion L1.

Fig. 5. The dependency of the first eigenvalue of
frame on the second crack depth a2/h and its local-
ization L2.

Fig. 6. The relationship between the first eigen-
value of frame and constructional damping µ for
first crack.

Fig. 7. The relationship between the first eigen-
value of frame and constructional damping µ for
second crack.

238



The 100 years anniversary of the Polish Physical Society — the APPA Originators

In Figs. 6 and 7, there are some areas in curves
progression where the increase in the constructional
damping µ leads to increase the values of the imag-
inary Im(ω∗) part of eigenvalue to maximum.

4. Conclusions

Changes in the crack location cause significant
changes in Re(ω∗) and Im(ω∗) of the first eigenvalue
of the system. Some substantial changes also can be
observed in the first eigenvalue of the system with
changes in the crack depth.

Considerable changes can be also observed in
the amplitude decay factor of first eigenvalue when
the coefficient µ changes. An increase of construc-
tional damping causes that the values of ampli-
tude decay factor Im(ω∗) increase to the highest
values, followed by Im(ω∗) → 0, where µ → ∞.
Obtained results help to determine parameters for
which the system is damped the most effective.
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