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The paper contains the results of theoretical, numerical, as well as experimental investigations on local
and global instability of slender system subjected to a specific load. The phenomenon of local and global
instability can be found when nonlinear slender systems are studied. The mentioned instability regions
are defined during a comparative analysis on the bifurcation load of a geometrically nonlinear structure
to a critical load of a corresponding linear one (generally, the linear system is a simplification of a
nonlinear one). In the numerical simulation one focuses on an influence of the parameters of the system
on vibration frequency and loading capacity on the basis of which the instability regions are plotted.
The investigated structure has a defect in the form of a reduced cross-sectional area. The presence of
the notch affects both investigated parameters. The studied slender system is loaded by the specific load
that leads to the divergence-pseudoflutter shape of the characteristic curve. The differential equations
of motion and natural boundary conditions are obtained with the use of the Hamilton principle. The
problem is solved with the small parameter method. The main goal of this research is to obtain the
global and local instability regions and to decide when to use nonlinear system or to substitute is with
the corresponding linear one. Finally, the numerical calculations are compared to the experimental
tests.

topics: vibrations, stability, piezoceramic, vibration control

1. Introduction

The phenomenon of local and global instability
can be found when nonlinear slender systems are
studied. The mentioned instabilities are defined
during a comparative analysis on the bifurcation
load of a geometrically nonlinear structure to a crit-
ical one of a linear system. Taking into account that
a slender system keeps a rectilinear form of static
equilibrium, one can find such a magnitude of exter-
nal load at which the instability occurs. The magni-
tude of this load is called a bifurcation load for non-
linear systems and critical for linear ones. The local
instability takes place when the bifurcation load of
a nonlinear system is smaller than the critical load
of a corresponding linear one. The global instability
phenomenon is present when the bifurcation load of
a nonlinear system is greater than the critical one
of a corresponding linear structure. The instability
point is calculated as a function of the flexural rigid-
ity factor. As presented in [1] at a lower magnitude
of the flexural rigidity factor, the local instability
occurs. Moreover, an idea of the local and global
instability is not reserved to slender systems but it
can be also found in studies on sandwich panels [2]
and flows [3].

2. The boundary problem

The studied column [4] is presented in Fig. 1.
The presence of a defect (notch) separates the
internal rod into three parts. The definition of
natural boundary conditions will satisfy the con-
tinuousness of displacements, bending moments,
and deflection angles. The column is loaded with

Fig. 1. Investigated system.
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a heads with circular outlines and combined mass
m. The loading head moves vertically and has a
radius R. The load receiving head is mounted on
the column and has a radius r. The length of the
elements is defined as l = l1 = l5 = l2+ l3+ l4. The
l0 mark shows the length between the contact point
of heads and the end of the column.

The Hamilton principle [5, 6] is used during the
boundary problem formulation

δ

t2∫
t1

[T − V ] dt (1)
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as:
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The symbols in Eqs. (2) and (3) present: E —
Young’s modulus [GPa], Ji — moment of iner-
tia [m4], Ai — cross-sectional area [m2], ρ — mate-
rial density [kg/m3], P — external load [N], Ui —
longitudinal displacements [m], Wi — transversal
displacements [m], R — loading head radius [m], r
load receiving head radius [m],mmass of heads [kg],
l0 — transom length [m], CL, CH — rotational
spring stiffness [N m].

The rotational springs are localized in connection
of rod 3 with 2 and 4. Such a creation of the mathe-
matical model will open the possibility of simulation
of weakening due to notch presence.

On the basis of (1) one obtains equations of mo-
tion, as well as natural boundary conditions which
are supplemented by the geometrical ones. The
further mathematical operations are done with the
small parameter method on the basis of which one
presents in this paper results from the first power
of the small parameter.

3. Numerical simulations
and experimental tests

The results of simulations are presented in the
nondimensional form:
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In Fig. 2 the relation between the maximum load
of the linear (KL) and nonlinear column at different
magnitude of r41 can be found.

When r41 ∈ (0, r41L) the local instability takes
place — the loading capacity of the linear system
is greater than the nonlinear one. Points r41L are
marked as black circles. The points localization
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Fig. 2. Local and global instability regions,
kA = 0.2, kB = 0.2, kC = 0.2, r24 = r51 = 1,
r34 = 0.578, d4 = 0.75, d3 = 0.05.

Fig. 3. Local and global instability — characteris-
tic curves, kA = kB = kC = kD = 0.2, r41 = 0.1,
r24 = r51 = 1, r34 = 0.578, d4 = 0.25, d3 = 0.05.

depends inter alia on notch parameters and rota-
tional springs stiffness and others not presented in
this publication. At r41 ∈ (r41L, 2) the global insta-
bility can be seen. It should be stated that the max-
imum loading of linear column occurs when r41 ≈ 0,
while at cH , cL =∞ in the case of nonlinear one.

In Fig. 3 the vibration frequency curves are plot-
ted at a different stiffness of rotational springs.

As presented at r41 = 0.1, one can find that the
obtained curves of linear system KL and nonlin-
ear one at the beginning covers each other. An in-
crease in magnitude of external load results in shift
of the KL curve in relation to the others and leads
to greatest magnitudes of vibration frequency and
loading capacity. At every curve one can find a
point of maximum vibration frequency above which
the change in inclination angle takes place which is
characteristic at Tomski’s load.

The experimental tests were performed with the
following apparatus: accelerometer Bruel&Kjaer
4508B, the analyzer Bruel&Kjaer 3560C, PULSE

Fig. 4. Theory vs. experiment.

software. The test sample was characterized by
l = 0.683 m, dw = 0.015 m, de = 0.012 m, mate-
rial — aluminum (E = 7.5 × 1010 Pa). The notch
location lc = 0.17 m from the support. Notch
height/depth 0.002 m/0.004 m. Heads parameters
R = 0.04 m, r = 0.0275 m, l0 = 0.083 m.

In Fig. 4 the continuous line shows the numerical
simulation results at cH , cL = ∞. Cross-marks
show the experimental test data. As plotted at
small magnitude of external load the theory and
experiment data have great convergence. With an
increase in external load the convergence is decreas-
ing which is a result of simplifications in the math-
ematical model.

4. Conclusions

As shown, the control on selection of the cross-
sectional areas of the elements leads to control of
the loading capacity and the vibration frequency
which finally may result in change of the complex
and expensive nonlinear system into simpler and
cheaper linear one.
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