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We develop a class of parametric distributions that are capable of accounting for non-standard empirical
properties that are evident in some financial time series. We aim at creating a parametric framework
that allows for serious divergences from the multivariate Gaussian case both in terms of properties of
marginal distributions and in terms of the dependence pattern. We are particularly interested in obtain-
ing a multivariate construct that allows for considerable degree of heterogeneity in marginal properties
of its components (like tail thickness and asymmetry). Moreover, we consider non-standard dependence
patterns that go beyond a linear correlation-type relationship while maintaining simplicity, obtained by
introducing rotations. We make use of marginal distributions that belong to generalized asymmetric
Student-t class analysed in [A. Harvey, R.J. Lange, J. Time Ser. Anal. 38, 175 (2017)], allowing
not only for skewness but also for asymmetric tail thickness. We illustrate flexibility of the resulting
bivariate distribution and investigate its empirical performance examining unconditional properties of
bivariate daily financial series representing dynamics of stock price indices and the related FUTURES
contracts, as well as analysing unconditional co-dependence between daily returns on DAX and FTSE
indices.

topics: Bayesian inference, generalized asymmetric t-distribution, skewness, orthogonal matrices,
rotations

1. Introduction

The empirical distributions of economic variables
might display serious divergences from the multi-
variate normal (Gaussian) case, see [1]. The intro-
duction of the probability distribution that would
depart from the Gaussian case occurred for the first
time more than 130 years ago [2–6]. During last
four decades this journey beyond normality has
been particularly desired for a proper modelling
the empirical distribution of data that characterise
fluctuations observed on financial markets. How-
ever, the majority of theoretical investigations in
the field of finance that have been developed over
last half a century rely on the fundamental assump-
tion that the distribution for related financial re-
turns is Gaussian. The well known example of
the explicit assumption of normality is the frame-
work that enables to price an option, developed
in [7, 8]. In other areas of finance, the Gaus-
sian assumption is made implicitly. For example,
the theory of mean-variance portfolio selection de-
rived from [9] does not require normality of re-
turns, but does assume that distribution of asset
returns are characterised by their first and sec-
ond moment. Consequently, the utility function
taken into account by a decision maker is a func-
tion only of the mean and variance of a portfo-
lio returns. Implicit normality is also rooted in

the capital asset pricing model (CAPM) elaborated
on the basis of Markovitz’ efficient frontier.

On the other hand, with rare exceptions, em-
pirical analyses that have been performed since
1960’s fail to find any support for the normality ax-
iom. In the 1990’s, the joint effort of economists
and physicists resulted with mathematical mod-
els that provided support for return distributions
with heavy tails. In particular, the departure from
the Gaussian distribution of financial returns was
justified by modelling the interactions of market
agents [9–13].

The feature being at least as important as heavy
tails is skewness (or asymmetry). Some serious at-
tempts to model it for the multivariate case have
been made during last decades. Some earlier stud-
ies conducted in the univariate case [14] were mo-
tivated by the statement that unmodelled skew-
ness may have a serious impact on inference on
other parameters in the model. They illustrated
this effect discussing the role of skewness in mod-
elling the relationship between risk and return. Re-
cently more extended discussion on this topic are
presented [15, 16]. The influence of skewness of
the distribution of asset returns was analysed in
the problem of portfolio selection [17] and also
in [18, 19]. Recently, the impact of heavy tails and
asymmetry on the results of the event study analysis
were performed in [20]. Theodossiou [21] presented
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empirical importance of the Skewed GED family of
distributions of financial assets in the problem of
option pricing, while in [22] use the family (with dy-
namic skewness) to model differences between up-
side and downside shocks in series of freight rates.

Motivating the importance of asset pricing model
that incorporates distributional asymmetry it was
emphasized [19] that systematic skewness is eco-
nomically important and governs risk premium.
Adcock [24] relaxed assumption of the multivari-
ate Gaussian distribution in the CAPM model and
presented results indicating empirical importance of
the family of multivariate Skewed-Normal distribu-
tions (see [25]) for UK Stocks.

Also many authors tried to go beyond conditional
normality assumed commonly in case of Multivari-
ate GARCH (M-GARCH) models. For example,
conditionally elliptical distribution in DCC model
was presented in [26]. Some other non-Gaussian
conditional distributions were analysed in [27–29].
However, commonly applied econometric strategy
using the Maximum Likelihood estimation proce-
dure might result with a considerable small-sample
bias [30].

There is no doubt that proper modelling of em-
pirical features observed for the case of related fi-
nancial time series requires construction of a flex-
ible class of distributions. Moreover, the develop-
ment of alternative methods of statistical inference
is necessary. In this paper we address these two is-
sues. We propose a novel class of parametric bivari-
ate distributions to model empirical properties that
are evident in some financial time series. We de-
part from the multivariate Gaussian case both in
terms of properties of the marginal distributions
and in terms of the co-dependence pattern. In or-
der to achieve flexibility we make use of marginal
distributions that belong to generalized asymmetric
Student-t class analysed by Harvey and Lange [31],
allowing not only for skewness but also for asym-
metric tail thickness. We also develop methods
of formal Bayesian inference and present posterior
analysis within constructed class of sampling mod-
els. We also consider the issue of Bayesian (density)
prediction. In the paper we illustrate flexibility of
the resulting bivariate distribution and investigate
its empirical performance examining unconditional
properties of bivariate daily financial series repre-
senting dynamics of stock price indices and the re-
lated FUTURES contracts.

All results were obtained on the basis of original
numerical procedures developed within Oxmetrics
environment.

2. A family of non-standard
bivariate distributions

To start let us consider n-variate random vari-
able z[nx1] = (z1, . . . , zn)

′ with independent coor-
dinates, i.e., with p(z) =

∏n
i=1 pi(zi). The shape

of isodensities of bivariate z is presented in Fig. 1.

Fig. 1. Plots of isodensities of bivariate distri-
bution with independent Student-t (first row) or
skewed Student-t (second row) coordinates with
ηi, i = 1, 2 degrees of freedom parameters.

To define pi(zi) we utilize Student-t univariate dis-
tributions with barely Gaussian tails (degrees of
freedom parameter ηi = 30) or much heavier ones
(ηi = 3). We also analyse the effect of imposing
hidden truncations mechanism [32] resulting with
a skewed Student-t distributions. Analysing plots
in Fig. 1, it is clear that possible outliers and asym-
metry can be captured by distribution p(z) only if
these features of the data will occur along original
coordinate axes, defined by canonical basis in Rn.
Also any family of distributions p(z) is not closed
with respect to the orthogonal transformation of
the components zi, i = 1, . . . , n, i.e., is not coor-
dinate free [33].

In the next step one may consider a distribution
resulting from a linear transformation:

ε = Az + b.

For a nonsingular matrix A[nxn] and b ∈ Rn the dis-
tribution of ε is described by a well-defined density
of the following form:

p(ε) =
1

|det[A]|

n∏
i=1

pi

(
A−1(i)(ε− b)

)
,

where A−1(i) denotes i-th row of matrix A−1.
In what follows make use of this result in a bivari-
ate setting, going far beyond the standard scheme
where A is defined as a root of symmetric and
positive definite matrix generating the covariance
structure.

To define the univariate distributions pi we
apply the generalised Student t-distribution pro-
posed recently by [31]. It generalizes previous re-
sults [34, 35], as well as [36, 37] among others, see
the references and discussion in [31].

However, the form used here is re-scaled to en-
sure unit variance. The resulting probability den-
sity function (with mode at 0 and nonzero mean in
general) is
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where GAST stands for “generalized asymmetric
skew t” and h denotes variance. The distribu-
tion is a two-piece version of a generalized t distri-
bution, parameter 0 < α < 1 introduces skewness,
with α = 0.5 denoting the absence of skewing (sym-
metry requires also ηL = ηR and υL = ηR), υ’s con-
trol shape around the mode (being more flat or
spiked, in a GED-like manner, with υ = 2 lead-
ing to Student-t type shape), while η’s affect tail
thickness (we require that ηL, ηR > 2 to ensure
that variance is finite). However, the influence
of η’s and υ’s on tail behaviour is not separated
clearly. Setting υL = υR = 2 and ηL = ηR leads to
Skewed Student-t case, with Skew Normal and Nor-
mal distributions being the limiting ones with ηL
and ηR → ∞. Hence, the asymmetric and flexible
distribution encompasses a number of well-known
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Consider a product measure-type bivariate gener-
alised Student-t distribution of the form:

p (z) = p (z1, z2) = pZ1
(z1) pZ2

(z2) , (1)
where pZi (zi) is the generalised Student-t distribu-
tion of [18] with individual shape parameters, trans-
formed into the above GAST form (parameterised
in terms of variance). The only restriction is that
each coordinate in z has the same variance h1, i.e.,
V (z) = h1I. The existence of variance could in
principle be relaxed (in a scale-driven model) in
order to allow for e.g. Cauchy-type tails. Now
assume that the variable z is subject to a linear

Fig. 2. Plots of isodensities, transformation of
the canonical basis and marginal distributions of
coordinates in Gaussian case (first row) as well as
in case of v = R(ϕ)z, for ϕ = 0 (second row), ϕ = π

4

(third row), ϕ = −π
6
(fourth row).

transformation, but the transformation matrix is
orthogonal, i.e.: v = R(ϕ)z, where:

R(ϕ) =

[
cos (ϕ) sin (ϕ)

− sin (ϕ) cos (ϕ)

]
The matrix R(ϕ) imposes clockwise rotation by

angle ϕ, R−1(ϕ) = R
′

(ϕ) with det
(
R(ϕ)

)
= 1, the trans-

formation might affect the density type but leaves
the covariance structure intact. Thus, vi’s are
uncorrelated with the same variances, but their
marginal distribution might change (relative to
those of zi’s). The density of the distribution of
v is given by the formula:

p (v) = det
(
R(ϕ)

)
pZ1

(
R

(1)′

(ϕ) v
)
pZ2

(
R

(2)′

(ϕ) v
)
=

pZ1

(
R

(1)′

(ϕ) v
)
pZ2

(
R

(2)′

(ϕ) v
)
.

Figure 2 shows how the shape of the isodensi-
ties of v varies with respect to different values of
the shape and the asymmetry parameters. In each
case we analyse distributions with variances for
margins equal to 4. In the first row we plotted
the reference case as the bivariate Gaussian distri-
bution, being a limiting case here. Possible direc-
tional asymmetry and different tail behaviour is pre-
sented by the isodensities in the second row. The
effect of rotation by a different angle is shown in
the third and fourth row. The most interesting
property of the analysed distributions is that the de-
pendence pattern assumes zero correlations.

The (rotated) vector v is subject to a further lin-
ear transformation that imposes location (mode) m
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Fig. 3. Plots of isodensities, transformation of
the canonical basis and marginal distributions of
coordinates in Gaussian case (first row) as well as
in case of y = Cv, for ϕ = 0 (second row), ϕ = π

4

(third row), ϕ = −π
6
(fourth row). In each case we

keep the same variances for margins equal to 4 and
correlation ρ = 0.5.

and covariance structure (i.e., correlation and dif-
ferences in variances) upon v:

y = Cv +m.

The matrix C can be parametrized using different
concepts of matrix roots, though here we assume
that it has the following form:

C =

[ √
1− ρ2 ρ

0
√

h2

h1

]
.

Then hi are variances of coordinates and ρ ∈ (−1, 1)
represents the correlation coefficient between y1
and y2. The density of the distribution of y is given
by the following formula:

p (y) = det
[
C−1

]
pZ1

(
R

(1)′

(ϕ)C
−1 (y −m)

)
× pZ2

(
R

(2)′

(ϕ)C
−1 (y −m)

)
.

Figure 3 depicts isodensities of some exemplary
cases of distribution of y = Cv. We analyse corre-
lated versions of distributions presented in Fig. 2.
In each case we assumed correlation coefficient
ρ = 0.5. Bivariate distributions presented in Fig. 3
show remarkable degree of flexibility in modelling
structure of observables, though it does not exceed
the case of a linear transformation of the product
measure initially defined for a vector p(z). Its flexi-
bility results from the fact that all the shape param-
eters could be made dimension-specific (in the space
of z’s). Crucially, the original formulation in [29] al-
lows for a complicated asymmetry pattern which is

here generalized to a higher dimension. The dis-
tribution is unimodal by construction (which is not
necessarily true about some other flexible constructs
like mixtures), however its mean is a complicated
function of all the model parameters. The rotation
angle ϕ is identified if p(z) defines a distribution
class that is not closed under rotations, which holds
almost everywhere in the parameter space consid-
ered here. However, e.g. for a (limiting) special
case of bivariate Gaussian distribution, ϕ would be
locally unidentified.

3. Empirical illustration 1:
S&P500 SPOT and FUTURES

We analysed daily logarithmic returns of
the S&P500 SPOT and FUTURES together
with volumes traded, covering the period from
28.08.2001 till 12.12.2017; 4099 observations. We
considered four bivariate datasets, namely the daily
returns of the SPOT index with daily returns of
the FUTURES volume traded (dataset A), the daily
returns of the SPOT index with daily returns of
the SPOT volume traded (dataset B), the daily
returns of the SPOT index with daily returns of
the FUTURES index (dataset C) and the daily re-
turns of the SPOT volume traded with the daily re-
turns of the FUTURES volume traded (dataset D).
The empirical properties of analysed bivariate series
are presented in Fig. 4.

We applied the class of bivariate distributions,
presented in the previous part to model the un-
conditional distribution of analysed series. In or-
der to perform this task we constructed Bayesian
models for each analysed series. The estimation was
carried over using the Metropolis-Hastings Random
Walk sampler; we assume prior independence across
all the model parameters. The priors are infor-
mative though tailored to convey relatively weak

Fig. 4. Analysed bivariate time series (the axes are
adjusted to match Fig. 3).
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Fig. 5. Estimation results: plots of isodensities
and margins for the parameters values correspond-
ing to posterior means.

information, for example for ϕ, ρ and α we assume
uniform priors. A posteriori we find limited skew-
ness (with α = 0.5 being rather likely) but strong
shape asymmetry (e.g. clear evidence against υL =
υR or ηL = ηR in some cases) which justifies the em-
pirical relevance of shape-asymmetric distributions
of [31, 34, 35]. We find support for υL < 1.5 (e.g.,
using SPOT index returns), 2 < ηL < 3, e.g., using
volume growth rates of FUTURES.

The estimated unconditional distributions are
presented in Fig. 5. For each dataset we plotted iso-
densities of the distribution corresponding to p (y)
with posterior means of parameters used as plug-in
estimates. We report the empirical importance of
the rotation effect (relying on the posterior mean
of parameter ϕ). The shapes of resulting marginal
univariate distributions are also presented.

In case of datasets A and B we see a little data
support in favour of dependence. Also the rotation
effect seems negligible. The posterior mean of pa-
rameter ϕ is equal to 0.068 in case of dataset A
and to 0.050 in case of dataset B. Also both
datasets support small negative correlation, indi-
cating no substantial linear dependence between
the variables. The posterior mean of the correlation
ρ = −0.089 in case of dataset A and ρ = −0.057 for
dataset B.

The strong linear dependence as well as em-
pirical importance of the rotation effect was ob-
tained for the case of dataset C. Estimated pos-
terior mean of parameter ϕ = −1.345 indicates
strong counter clockwise rotation of coordinates,
by more than 75◦. The posterior mean of corre-
lation parameter ρ = 0.969 is rather high in this
case. A moderate effect of dependence was obtained
in case of dataset D. We report some evidence in
favour of the rotation effect, as the posterior mean
of ϕ = −0.185. It results with counter clockwise
rotation of coordinates by about 10◦. The dataset D

Fig. 6. Dataset B: the data versus the posterior-
predictive density.

can be also described by small positive corre-
lation, since the posterior mean of ρ = 0.236.
The posterior-predictive distribution (that takes
into account the estimation uncertainty) is depicted
in Fig. 6 (for the dataset B).

4. Empirical illustration 2:
unconditional co-dependence

between DAX and FTSE daily returns

Another case considered here focuses on analy-
sis of joint unconditional distribution of daily re-
turns of FTSE 100 and DAX 30 daily logarithmic
returns. The motivation to consider the two series
is the following: DAX returns might be perceived
as representing a more fundamental perspective of
the real side of the EU economy. On the other
hand, FTSE represents international financial link-
ages and corresponds to financial processes. The
data cover the period of 03 Jan 1991 till 13 Jul
2017, which (keeping only the trading days for both
stock exchange markets) results in 6639 data points.
The distribution of analysed series are presented
on Fig. 7.

We construct time series of the corresponding re-
turns considering two options. Firstly we define
the usual daily returns linking the closing price in
a given day with the closing price of the previous
working day; the case is labelled SERIES I. Sec-
ondly, due to properties of the FTSE index we con-
sider the returns between opening and closing of
the same working day (form both indices), which is
labelled SERIES II.

For both datasets we estimated unrestricted
model (denoted by Mρ,ϕ) and its two special cases,
denoted by Mρ,0 and M0,ϕ, obtained by impos-
ing restrictions either ϕ = 0 (in case of Mρ,0) or
ρ = 0 (in case of M0,ϕ), respectively. The results
of posterior inference are presented in Figs. 8–10
and also in Tables I–III. Figure 8 and Table I
is related to Mρ,0, Fig. 9 and Table II is re-
lated to M0,ϕ, while Fig. 10 and Table III con-
tains results obtained in case of unrestricted model
Mρ,ϕ. In Figs. 8–10 we presented histograms of
the marginal posterior distributions of all parame-
ters, while Tables I–III contain posterior summaries
(means and standard deviations) of shape parame-
ters of the distribution (2).
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TABLE I

Posterior means and standard deviations of shape parameters and ρ obtained in case of restricted model Mρ,0

with ϕ = 0 and ρ ∈ (−1, 1).

υ1L υ2L υ1R υ2R η1L η2L η1R η2R ϕ ρ

DATASET I
1.70 1.59 1.58 2.01 6.15 4.69 6.43 3.95 – 0.77
0.211 0.190 0.224 0.253 1.547 1.032 2.280 0.560 – 0.0096

DATASET II
1.36 1.66 2.027 1.84 12.06 4.33 3.88 4.03 – 0.66
0.183 0.199 0.303 0.232 12.107 0.815 0.559 0.632 – 0.014

TABLE II

Posterior means and standard deviations of shape parameters and ϕ obtained in case of restricted model M0,ϕ

with ρ = 0 and ϕ ∈
(
−π

2
, π
2

)
≈ (−1.57, 1.57).

υ1L υ2L υ1R υ2R η1L η2L η1R η2R ϕ ρ

DATASET I
2.27 1.20 2.71 1.59 4.41 11.45 2.03 5.70 1.04 –
0.268 0.114 0.313 0.177 0.583 10.636 0.006 1.437 0.090 –

DATASET II
2.23 1.06 2.71 1.18 4.32 11.73 2.01 6.18 1.37 –
0.252 0.040 0.315 0.100 0.579 4.203 0.0014 1.528 0.015 –

TABLE III

Posterior means and standard deviations of shape parameters, ρ and ϕ obtained in case of unrestricted model
Mρ,ϕ, i.e., with ρ ∈ (−1, 1) and ϕ ∈

(
−π

2
, π
2

)
≈ (−1.57, 1.57)

υ1L υ2L υ1R υ2R η1L η2L η1R η2R ϕ ρ

DATASET I
1.23 1.83 1.64 1.80 8.28 5.31 5.42 5.37 −1.14 0.77
0.120 0.267 0.178 0.221 3.831 1.228 1.464 1.066 0.068 0.010

DATASET II
1.06 1.96 1.25 1.98 10.79 4.19 5.50 4.51 −0.69 0.67
0.037 0.308 0.123 0.300 3.331 0.667 1.362 0.833 0.028 0.011

Analysing results presented in Table III one
might note, that in both cases of the data, param-
eter ϕ has the posterior concentrated away from
zero (so is the correlation coefficient ρ). This in-
dicates substantial empirical evidence in favour of
existence of both effects. With reference to poste-
rior analysis of parameter ϕ ∈

(
−π2 ,

π
2

)
it is clear

that both datasets support existence of a difference
set of coordinate axes along which shape of distri-
butions of yi’s is modelled by univariate pzi den-
sities of the Harvey and Lange (2017) type in (1).
Comparison of posterior inference about ϕ in case
of unrestricted model (Table III) with these ob-
tained in case of imposing restrictions of no cor-
relation (ρ = 0; model M0,ϕ, Table II) one may
notice very strong linkage between effect of exis-
tence of correlation and orthogonal transformation
of coordinates in the mode. Condition to restric-
tion ρ = 0 posterior density of ϕ changes its dis-
tribution, placing the majority of the probability
mass in regions of a positive sign of ϕ, while in

Fig. 7. DAX/FTSE daily returns.

case of unrestricted model the posterior distribu-
tion of ϕ indicated positive sign of the angle param-
eter. Surprisingly we report no opposite linkage,
i.e., between orthogonal transformation and corre-
lation. Posterior inference, about parameter ρ re-
mains unchanged in case of unrestricted model (Ta-
ble III) and the model Mρ,0 with restriction ϕ = 0,
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Fig. 8. Histograms of the marginal posterior dis-
tributions of parameters obtained in case of re-
stricted model Mρ,0 with ϕ = 0 and ρ ∈ (−1, 1).

forcing no orthogonal transformation. In both mod-
els,Mρ,ϕ andM0,ϕ, the data indicate strong uncon-
ditional correlation between univariate series, with
posterior mean equal to 0.77 for SERIES I and
0.66 for SERIES II.

Consequently, our analysis shows that the ef-
fect of correlation is empirically important and
the data support non-zero correlation so strongly,
that the inference about ρ remains unaffected irre-
spectively to existence of the orthogonal transfor-
mation in the model. On the other hand, orthog-
onal component is empirically important, however
the posterior inference about the angle of coordi-
nate axes in (2) is extremely sensitive with respect
to the value of correlation parameter ρ.

Also, restrictions in generalised modelMρ,ϕ affect
noticeably inference about shape parameters, i.e.,
η′s and υ′s. According to results presented in Ta-
ble III the DAX30 returns (included in our bivari-
ate setting as a second variable) suggest the shape
of distribution closer to the Student-t case as
the posterior distributions of υ2L and υ2R are lo-
calised closer to the value υ = 2 than in case of
FTSE100 returns. This effect seems qualitatively
invariant with respect to the choice of the method
of calculation of daily returns, i.e., in SERIES I
and SERIES II. The shape of FTSE100 returns is
closer to the Laplace case, as posterior distribution

Fig. 9. Histograms of the marginal posterior dis-
tributions of parameters obtained in case of re-
stricted modelM0,ϕ with ρ = 0 and ϕ ∈

(
−π

2
, π
2

)
≈

(−1.57, 1.57).

of υ1L and υ1R are localised closer to the value
υ = 1. Another feature strongly supported by both
datasets in case of model Mρ,ϕ is tail asymmetry
of the distribution of FTSE100 returns and qualita-
tively the same left and right tail for the distribution
of DAX returns.

Analysing the posterior inference about shape pa-
rameters in case of restricted modelsM0,ϕ andMρ,0

again we report substantial sensitivity of results
with respect to restrictions ρ = 0 or ϕ = 0. Since
both restrictions are not supported by the datasets,
our analyses show that neglecting both corre-
lation and orthogonal component may influence
strongly results of inference about the shape and
tail behaviour of the distribution of analysed se-
ries. Strong variability of posterior means of η′s
and υ′s in case of models M0,ϕ and Mρ,0 clearly in-
dicate, that these misspecified models may lead to
very different conclusions about the nature of de-
pendence between analysed returns or misleading
risk assessment.

The estimation uncertainty is fully taken into ac-
count in the posterior-predictive distribution, which
is a mixture of sampling-theory predictive den-
sity with mixing distribution being the joint poste-
rior. Hence the estimation uncertainty is ‘integrated
out’. Iso-densities of the distribution are depicted
in Fig. 11.

71



The 100 years anniversary of the Polish Physical Society — the APPA Originators

Fig. 10. Histograms of the marginal posterior dis-
tributions of parameters obtained in case of unre-
stricted model Mρ,ϕ i.e. with with ρ ∈ (−1, 1) and
ϕ ∈

(
−π

2
, π
2

)
≈ (−1.57, 1.57).

Fig. 11. Estimated density function of the poste-
rior predictive distribution in case of unrestricted
model Mρ,ϕ.

Again, the densities do not resemble standard
distributions nor the usual construct obtained as
unconditional distributions from the standard dy-
namic models. The posterior predictive distribu-
tion analysed here provides a natural benchmark
to long-term density forecasts from dynamic mod-
els and hence can be used to provide some sort of
“boundary” values of risk measures.

5. Conclusions

We develop a class of flexible multivariate distri-
butions that differs from the usual ones in two par-
ticular aspects. Firstly, we allow for high degree of

stochastic heterogeneity across variables (address-
ing asymmetry and tail thickness issues), allowing
for 5 shape parameters per dimension. Secondly,
we introduce the dependence not only via covari-
ances but also via rotations (which is possible due to
generality of the distribution). This approach dif-
fers from the alternative ones, e.g., using the cop-
ula functions: here the form of marginal distribu-
tion is not directly controlled. However, the depen-
dence structure is imposed by a well-defined trans-
formation that goes beyond considering covariances
only while it remains tractable also in higher di-
mensions. Hence, we provide a practical general-
ization of a product measure which allows for high
degree of heterogeneity, more complicated depen-
dence while avoiding some of the potential problems
that arise within high-dimensional modelling using
copula functions. The number of shape parame-
ters increases linearly with dimension, but one could
of course consider less-heavily parametrized special
cases obtained by linear constraints. Therefore,
the model provides a general framework allowing
for the search for empirically relevant (restricted)
special cases. Importantly, the construct considered
here could be used to define conditional distribution
in a dynamic model, which will be subject to further
research.
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