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We introduce a new dynamic peaks-over-threshold (POT) model for predicting both the timing and
the size of extreme losses in financial markets. The novelty of our approach lies in treating the times
at which the magnitude of loss exceeds a sufficiently large threshold as a realization of a discrete random
variable. The conditional hazard function with respect to the time in-between consecutive extreme losses
— and hence, the risk of an extreme loss over the next time unit — is described using two lifetime
distributions: the discrete Weibull and the discrete Burr. To consider the clustering of extreme losses,
the scale parameters of these discrete distributions vary with time and have the functional form of
autoregressive conditional duration (ACD) models. Accordingly, the probability of an extreme loss over
the next unit of time depends on times of extreme losses in the past and the period that has elapsed
since the last such event. We demonstrate how to predict the value at risk (VaR) from the discrete-
duration POT model and empirically confirm that this new approach provides a good alternative to
the ACD-POT models outlined in the literature.
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1. Introduction

The growing importance of risk management is
a well-known fact when considering the globalisa-
tion of financial markets, the plethora of innovations
in derivative securities, and the cycle of equity/bond
market collapses. The protection of individual in-
stitutions or the entire financial system against un-
expected and often catastrophic movements in se-
curity prices is essential, which was clearly demon-
strated by the financial crisis of 2008–2009. A pri-
mary concept used to quantify market risk is
the value at risk (VaR), defined as the maximum
loss expected on a portfolio over a certain hold-
ing period at a given probability (confidence) level.
The VaR has become the industry benchmark for
risk calculation and has inspired a growing number
of statistical models aimed at measuring risk ex-
posures (see [1] for a survey). One of the relatively
new approaches to measuring VaR brings together
two different strands of the literature. The first
strand is the marked point process (MPP) theory
that was primarily used in studies on market mi-
crostructure and ultra-high-frequency finance [2].
More recently, this approach is recognized as a well-
tailored to predict the arrival times of extreme re-
turns. The second strand is the extreme value
theory (EVT), especially the peaks-over-threshold
(POT) method for describing the magnitude of ex-
treme loss that surpasses a sufficiently large thresh-
old. The resulting dynamic POT model of [3], being
inspired by recent advances in the econometrics of

point processes, allows the user to both capture
serial dependence in extreme losses and to main-
tain the merits of the EVT approach. An alterna-
tive approach of modeling extreme losses was also
proposed in [4], based on threshold interevent time
superstatistics.

Chavez-Demoulin et al. [3] uses a parametric
specification of conditional intensity function (CIF)
that describes the evolution of the point process
comprised of times when extreme losses occur. Over
the past years, a variety of studies on this sub-
ject have emerged with the objective of model-
ing the self-exciting property of CIF (characterizing
the arrival of extreme events). This was intended
to form clustering patterns of large losses, in line
with the characteristic features of real-world data.
To this end, very often the Hawkes process [5–9],
or/and the autoregressive conditional duration
(ACD) process [10–12] were applied.

We contribute to this body of literature by in-
troducing a dynamic ACD-POT model that not
only describes evident clustering patterns in both
the timing and the magnitude of extreme losses, but
it also takes into account the discreteness of time in-
tervals between subsequent extreme events. Thus,
we do not pursue the continuous-time approach of
previously mentioned studies. Instead, we build
our model using the discrete-time framework where
the time variable is treated as a sequence of indi-
visible time units upon which extreme events can
be observed.
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Fig. 1. The times and magnitudes of ground-up
threshold exceedances by daily negated log returns
on six equity indexes between Jan. 1981 and Aug.
2019. For each stock index, the selected threshold
cuts off and exposes 5% of the largest negated log
returns (in absolute terms).

The objective of this article is motivated by
empirical observation of financial data. Extreme
losses are those that exceed (in absolute terms)
a sufficiently large threshold u. Figure 1 presents
time series of time locations and absolute mag-
nitudes of daily negated log returns that exceed
such a large threshold u, for six major international
stock indexes (DAX 30, FTSE 100, Hang Seng,
IDX, S&P 500, TOPIX) over the period of Jan-
uary 1981–August, 2019 (the daily closing prices for
the stock indexes were downloaded from the Datas-
tream database available at the Warsaw School of
Economics and provided by the Refinitiv company).

For each of the six stock indexes, the corre-
sponding threshold u has been set to expose only
5% of the largest negated log-returns. To imple-
ment the POT method we used the negated log
returns, i.e., the log returns pre-multiplied by −1,
and thus the losses are defined as positive vari-
ables. In the sequel of the paper we will re-
fer to these extreme losses as “extreme events”.
First, we observe that both the magnitude of
these losses and the days that they occur are sub-
ject to clustering. The latter property can be
also deduced from Fig. 2, presenting a quantile-
quantile (QQ) plot of inter-threshold-exceedance
time spans against an exponential distribution. For
all stock indexes, the QQ plots provide evidence
that the time location of extreme losses is not

Fig. 2. Exponential quantile-quantile plot of
the time intervals (in number of days) between
successive extreme losses for six equity indexes
between Jan. 1981 and Aug. 2019.

Fig. 3. Frequency histogram for the time intervals
(in number of days) between successive extreme
losses for six equity indexes between Jan. 1981 and
Aug. 2019.

distributed according to the homogeneous Poisson
point process. Also interesting, Fig. 3 demonstrates
that the daily sampling of data and the cluster-
ing phenomenon concentrates the frequency mass
of the inter-threshold-exceedance durations (i.e.,
the time intervals between threshold exceedances)
at the lowest values possible (equal to 1–5 days),
which emphasizes the discreteness of this data. In-
deed, on average about 14% of time spans between
any two successive extreme events are only one day
long, and about 35% are less or equal to three days.
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Intending to allow the data to speak for itself,
we aim to model the time interval between suc-
cessive extreme losses as an integer-valued ran-
dom variable using discrete lifetime distributions.
To this end, we implement the discrete Weibull and
the discrete Burr distributions with observation-
driven scale parameters as the conditional distribu-
tions for inter-exceedance durations, which is in line
with the functional form of ACD models. Draw-
ing from the approach of [3], we derive the dis-
crete counterpart to CIF that characterizes the ar-
rival probability of extreme losses and we calculate
the one-day-ahead forecasts of VaR. We aim to show
that treating inter-exceedance durations not as con-
tinuous but as integer-valued variables may result
in superior predictions of risk in terms of average
VaR levels and obtained model validation results.

Section 2 presents an outline of the point process
approach to POT models [3, 5, 7]. Section 3 focuses
on the ACD-POT approach [10–12] as an exam-
ple of the dynamic POT model in continuous time.
Section 4 introduces the new ACD-POT model,
which was augmented using discretization of condi-
tional distributions for inter-exceedance durations.
Finally, Sect. 5 compares different specifications of
POT models using empirical data.

2. Point process approach to POT modeling

Let t ∈ R+ denote calendar time. Accord-
ing to the point process approach to POT mod-
eling [3], the realization of the stochastic pro-
cess, {ti, yi}i∈{1,2,...,n}, is considered, being a dou-
ble sequence of: (i) times (i.e., 0 < ti < ti+1),
when extreme negative returns are observed, and
(ii) the corresponding sizes (in absolute terms) yi of
such extreme losses. This can be treated as the sam-
ple path of the MPP, reflecting extreme returns oc-
curring at random times ti. The observed marks of
the point process are the realizations yi of a random
variable Y .

The time evolution of the MPP can be character-
ized by the CIF, i.e., λ(t|Ft):

λ(t|Ft) = lim
∆↓0

Pr
[(
N(t+ ∆)−N(t)

)
> 0
∣∣Ft]

∆
.

(1)
Note that the CIF is conditional upon Ft being an
information set available at t, consisting of the com-
plete history of event locations and their marks,
(i.e., Ft ≡ σ{(ti, yi),∀i : ti ≤ t}), N(t) denotes
a right-continuous counting function (i.e., N(t) ≡
max{n ≥ 0 : tn ≤ t}). In this framework λ(t|Ft)
can be treated as an arrival rate of an extreme loss
in the upcoming instant of time given the observed
history of the process. If λ(t|Ft) is constant (i.e.,
λ(t|Ft) = λ), then the MPP becomes a Poisson
MPP with a constant arrival rate λ. However, to
capture clustering phenomenon of extreme losses,
λ(t|Ft) shall be made dependent on event locations,
ti’s, and yi’s, where ti ≤ t.

The MPP concept provides the grounds for
derivation of the conditional VaR measure. From
a statistical perspective, the VaR for a confidence
level 1 − τ , τ ∈ (0, 1), constitutes a τ -th quantile
of the profit-and-loss distribution. Note, however,
that the study relies on the negated log returns –
hence, after adopting the notation introduced so far,
the conditional VaR at a confidence level 1 − τ ,
forecasted at time t for the next time unit (i.e.,
VaRτ,t+1 ≡ yτ,t+1), can be defined as follows:

τ = Pr(Yt+1 > yτ,t+1|Ft) = Pr(Yt+1 > u
∣∣Ft)

×Pr(Yt+1 − u > yτ,t+1 − u
∣∣Yt+1 > u;Ft). (2)

Thus, the conditional probability that a return ex-
ceeds yτ,t+1, can be decomposed into: (i) the con-
ditional probability that extreme loss occurs in
the next unit of time, and (ii) the conditional prob-
ability that the magnitude of this loss is larger than
yτ,t+1, given that an extreme loss occurred (i.e.,
a negated return that exceeds u). As proposed
in [5], the first component of (2) (i.e., the prob-
ability, that an extreme event will be observed
over the upcoming time unit — for example, over
the next day), can be approximated by the CIF of
the point process for extreme losses

Pr
(
Yt+1 > u|Ft

)
=

1− Pr
[
N(t+ 1)−N(t) = 0

∣∣Ft] =

1− exp

− t+1∫
t

λ(s|Fs)ds

 ≈ λ(t|Ft). (3)

Accordingly, the point process approach to POT
models takes advantage of parametric specifications
for both components in (2): (i) λ(t|Ft), that de-
scribes timing pattern of an extreme loss; and
(ii) the conditional probability that the magnitude
of the extreme loss is larger than yτ,t+1 (given that
the loss exceeded u). In line with the Pickands–
Balkema–de Haan theorem, the latter component
can be approximated using the generalized Pareto
(GP) distribution [3, 5, 7]. Hence, the condi-
tional probability that a loss magnitude exceeds
yτ,t+1 (given that it exceeded u) can be rewritten
as follows:

Pr(Yt+1 − u > yτ,t+1 − u
∣∣Yt+1 > u;Ft) ≈

1− FGP(yτ,t+1 − u
∣∣Yt+1 > u;Ft) =

(
1 + ξ

yτ,t+1 − u
σ

)−1/ξ

+

, (4)

where FGP(·) denotes the CDF of the GP distri-
bution with the scale parameter σ ∈ R>0 (the
value of the scale parameter can be made time-
varying and modeled in an observation-driven fash-
ion) and the shape parameter ξ ∈ R 6=0. If ξ → 0,
FGP(·) tends to the CDF of an exponential distri-
bution. Accordingly, based on (2)–(4), the VaR
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at a confidence level 1 − τ predicted at time t for
the next unit of time can be derived from the fol-
lowing equality:

τ = λ(t|Ft)
(

1 + ξ
yτ,t+1 − u

σ

)−1/ξ

+

, (5)

as

yτ,t+1 =

[(
τ

λ(t|Ft)

)−ξ
− 1

]
σ

ξ
+ u. (6)

Therefore, any upward movement in λ(t|Ft) will
result in an instantaneous increase in the fore-
casted VaR. At the same time, VaR is depen-
dent on the scale σ and shape parameter ξ of
the GP distribution for the magnitude of an thresh-
old exceedance.

3. ACD model

A complete description of a point process can
be provided by a sequence of event time loca-
tions ti, or a sequence of intervals between them
xi = ti − ti−1, which are also known as inter-event
durations or waiting times. Capturing the stylized
features that are inherent to financial durations,
especially their positive autocorrelation, poses
a challenge in the area of empirical finance. One of
the seminal solutions to this problem is the ACD
model introduced in [13] (for possible applications,
see [14–17]), which decomposes a financial duration
into two parts: (i) its conditional expectation
Ψi = E(xi|Fti−1

), and (ii) an independent and
identically distributed positive random variable εi:

xi = Ψiεi, (7)
where the density function of εi satisfies
f(εi|Fti−1

) = f(εi). Hence, the temporal de-
pendence in the duration process is described by
the time evolution of conditional expected dura-
tions Ψi. The literature on high-frequency financial
data suggests various functional forms of Ψi (for
a survey, see [18]). One of the most successful
is the logarithmic ACD (LACD) model proposed
in [19], which we will use for inter-threshold-
exceedance durations in our empirical analysis.
However, we additionally enrich its original specifi-
cation with the explanatory variable ln(yi−1 − u),
thus allowing for the potentially negative impact of
an extreme loss magnitude on the expected waiting
time to the upcoming extreme-loss event as follows:

ln(Ψi) = ω + β ln(Ψi−1) + α ln(xi−1)

+ζ ln(yi−1 − u). (8)
The observation-driven specification of the LACD
model allows us to capture temporal dependence
in the duration process, and due to the logarithmic
transformation of the conditional expected dura-
tion, (8) does not require imposing nonnegativity
constraints on the parameter vector.

For parametric ACD models, one must decide
on the conditional distribution for inter-event dura-
tions. The original ACD model takes advantage of

the Weibull(µ, γ) distribution, where µ ∈ R>0 de-
notes the scale parameter and γ ∈ R>0 is the shape
parameter (see [13]). To make the expectation of
εi equal to 1, the scaling factor for financial du-
rations is defined as ΦW,i = Ψi

[
Γ
(
1 + γ−1

)]−1.
Hence, for the Weibull-ACD models, xi is described
by the conditional survival function

SW

(
xi

∣∣∣Fti−1

)
= exp

(
−
(

xi
ΦW,i

)γ)
, (9)

and its conditional density is given as follows:

fW (xi|Fti−1)=
γ

xi

(
xi

ΦW,i

)γ
exp

(
−
(

xi
ΦW,i

)γ)
.

(10)
Another widely used alternative for modeling

financial durations is the Burr distribution, i.e.,
Burr(µ, κ, η) [20]. For the Burr-ACD class of mod-
els, the conditional survival function of xi is given
as

SB

(
xi

∣∣∣Fti−1

)
=
(

1 + ηΦ−κB,ix
κ
i

)−η−1

, (11)

where 0 < η < κ, and

ΦB,i = Ψi
η1+κ−1

Γ(η−1 + 1)

Γ(1 + κ−1)Γ(η−1 − κ−1)
.

For η → 0 the Burr distribution converges to
the Weibull distribution with the shape parame-
ter κ. In turn, for η → 0 and κ = 1 its limit-
ing case is an exponential distribution. If η = 1,
the log-logistic distribution is obtained. Accord-
ingly, the conditional density function of xi in
the Burr-ACD model is as follows:

fB(xi|Fti−1) =
κΦ−κB,ix

κ−1
i(

1 + ηΦ−κB,ix
κ
i

)η−1+1
. (12)

After replacing waiting times xi = ti − ti−1

with the backward recurrence times (i.e.,
x(t) = t− tN̆(t), where N̆(t) ≡ max{n ≥ 0 :

tn < t}), one can derive the CIF for the ACD
models as λ(t|Ft) = f(x(t)|FtN̆(t)

)/S(x(t)|FtN̆(t)
).

It is important to note here, that the concept of
CIF is analogous to the concept of the conditional
hazard function, much more widely used term
in the ACD literature. In this way, there exists
a relationship: h(x(t)|FtN̆(t)

) = λ(t|x(t),FtN̆(t)
) [2].

Thus, the CIF according to the Weibull-ACD or
the Burr-ACD processes is correspondingly given
as follows:

λW (t|Ft) = γΦ−γ
W,N̆(t)+1

(t− tN̆(t))
γ−1, (13)

λB(t|Ft) =
κΦ−κ

B,N̆(t)+1
(t− tN̆(t))

κ−1

1 + ηΦ−κ
B,N̆(t)+1

(t− tN̆(t))
κ
. (14)

Based on (13), or — alternatively — on (14), one
obtains the ground intensity needed for the VaR
predictions (6). The use of (13)–(14) implies that
a clustering of event times might arise due to
a co-acting of both factors: (i) instantaneous jumps
in the conditional expected duration directly after
the arrival of an extreme loss, and (ii) the shape
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of the baseline intensity function determined by
parameters γ (for the Weibull distribution) or κ
and η (for the Burr distribution). More specifically,
the CIF corresponding to the Weibull-ACD models
decreases monotonically between any two subse-
quent event times if γ < 1, is constant if γ = 1
(the case of the exponential distribution), and in-
creases monotonically if γ > 1. For the Burr-ACD
models, if κ ≤ 1, the CIF between any two subse-
quent event times is monotonically decreasing and,
if κ > 1, it is non-monotone and has an inverted U
shape. Any abrupt changes in the intensity level
can only take place instantaneously after extreme
losses are observed. The magnitude of these
shifts is determined based on the time-varying
conditional expected durations, see (8).

4. A discrete duration POT model

We propose two feasible extensions of the ACD
models to the discrete time framework. Let us now
define the calendar time as a discrete positive vari-
able, i.e., t ∈ Z>0. Similarly to the case of contin-
uous time, we consider the sample path of the pro-
cess given by the double sequence {ti, yi}i=1,2,...,n

(0 < ti < ti+1). However, once the time is now a dis-
crete value, ti is a positive integer and, basically,
denotes the number of a time unit (i.e., a day) over
which the i-th extreme loss was observed. As before,
yi ∈ R+ denotes the observed magnitude of an i-th
extreme loss. The inter-threshold-exceedance dura-
tion Xi, taking the values xi = ti− ti−1 (xi ∈ Z>0),
denotes the time interval (in the number of days)
between successive losses that surpass the thresh-
old u. It is characterized by the conditional proba-
bility f(xi|Fti−1

) = Pr(Xi = xi|Fti−1
) and the con-

ditional survival function which — if evaluated at xi
— delivers the probability that Xi is at least equal
to xi, i.e., that the period between extreme losses
lasts at least xi (given Fti−1

)
S(xi|Fti−1) = Pr(Xi ≥ xi|Fti−1) =

∞∑
k=i

f(xk|Fti−1
). (15)

Let us also introduce integer-valued backward re-
currence times X(t) in a close analogue to the case
of continuous time (i.e., x(t) = t− tN̆(t)). The dis-
crete backward recurrence times count the days that
have passed since the last extreme loss. In this dis-
crete framework, the conditional hazard function is
given as follows:

h(x(t)|FtN̆(t)
) =

f(x(t)|FtN̆(t)
)

S(x(t)|FtN̆(t)
)
. (16)

Accordingly, in a discrete-duration framework,
the conditional hazard rate is the conditional prob-
ability that the extreme event takes place over
the day t, given Ft−1 (i.e., given the informa-
tion set up to (and including) day No. t− 1).
For example, the value of the hazard func-
tion corresponding to an extreme loss just one

day after the previous one yields the following:
Pr[X(t) = 1|FtN̆(t)

]/Pr[X(t) ≥ 1|FtN̆(t)
] =

Pr[X(t) = 1|FtN̆(t)
], the conditional probabil-

ity of experiencing an extreme loss exactly two
days after the preceding one (given that there
was no intervening extreme loss in-between) yields:
Pr
[
X(t) = 2|FtN̆(t)

]
/Pr

[
X(t) ≥ 2|FtN̆(t)

]
, etc.

There is a considerable strand of literature
on discrete lifetime distributions associated with
well-known continuous distributions (for a survey,
see [21, 22]). According to one approach, the dis-
crete distribution based on the continuous distribu-
tion can be obtained by an appropriate grouping on
the time axis (for more about this idea, see [23]).
In this setup, the continuous lifetime distribution
characterized by the survival function, S(·), may
serve as an underlying distribution for the discrete
random variable Z. If so, the probability function
of Z is given as follows:
P (Z = z) = S(z)− S(z + 1), z = 0, 1, 2, . . . (17)

Such a discretization of a continuous lifetime distri-
bution maintains the functional form of the survival
function. As stated in [24], many characteristics
and reliability properties of the discrete distribu-
tion based on the underlying continuous distribu-
tion, shall, hence, remain unchanged.

Because time intervals between extreme losses
can take only positive values (i.e., xi = 1, 2, 3, ...),
while using the discretization technique given
in (17), we implement the right-shifted discrete
analogues of the Weibull and Burr distributions.
Accordingly, for the LACD model, where the du-
rations are (conditionally) discrete Weibull (DW)
distributed (i.e., for the discrete-Weibull-LACD
model), the conditional probability function for Xi

(i.e., f(xi|Fti−1) = Pr(Xi = xi|Fti−1)), can be de-
rived as follows:

fDW(xi|Fti−1) =

SW

(
xi − 1

∣∣∣Fti−1

)
− SW

(
xi

∣∣∣Fti−1

)
, (18)

and for the LACD model, where the durations are
(conditionally) discrete Burr (DB) distributed (i.e.,
for the discrete-Burr-LACD model), the probability
function of Xi can be derived as

fDB(xi|Fti−1
) =

SB

(
xi − 1

∣∣∣Fti−1

)
− SB

(
xi

∣∣∣Fti−1

)
. (19)

The conditional survival functions, S(xi|Fti−1
) =

Pr(Xi ≥ xi|Fti−1
), are correspondingly given as

SDW(xi|Fti−1
) = SW (xi − 1|Fti−1

), (20)

SDB(xi|Fti−1
) = SB(xi − 1|Fti−1

). (21)
A discrete analogue of the Weibull distribution

was first introduced in [25]. As with the case of
the Weibull distribution, it is characterized by one
shape and one scale parameter, that in our case has
an observation-driven functional form based on (8).
Some examples of conditional probability and con-
ditional hazard functions are presented in Fig. 4.
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Fig. 4. Discrete-Weibull-LACD model: feasible
conditional probability and conditional hazard
functions evaluated at Ψi = 5.

Fig. 5. Discrete-Burr-LACD model: feasible con-
ditional probability and conditional hazard func-
tions evaluated at Ψi = 5 for η = 0.3 (upper panel)
and η = 1.5 (lower panel).

Feasible shapes of these functions were plotted for
Ψi = 5. Similar to the case of the Weibull distribu-
tion, the hazard function for the discrete Weibull
distribution can be monotonically increasing for
γ > 1 and decreasing for γ < 1. For γ = 1 the haz-
ard function is flat, and one yields the geometric
distribution as a discrete analogue to the exponen-
tial distribution.

A discrete counterpart to the Burr distribution
was examined in [24]. When used as the condi-
tional distribution of time intervals between ex-
treme losses, it has a time-varying scale parame-
ter and two constant shape parameters κ and η.
Figure 5 illustrates several feasible shapes of con-
ditional probability and hazard functions. The dis-
crete Burr distribution allows us to capture a wider
plethora of clustering patterns than the discrete
Weibull distribution. More specifically, the hazard
can be monotonically decreasing for κ ≤ 1 and of
inverted U-shape for κ > 1.

Our study aims to account for the temporal de-
pendence in both xi, and yi−u. To fulfill the latter
objective, we allow for the time-varying scale pa-
rameter of the GP distribution describing the mag-
nitudes of extreme losses over the threshold u.
The scale parameter σ (4), will be thus specified as
a linear function of the hazard function h(xi|Fti−1)
as follows:

σi = ωs + ζsh(xi|Fti−1
), (22)

where ωs ∈ R>0, ζs ∈ R≥0, so that σi ∈ R>0.
Thus, the awaited size of a threshold exceedance
shall be proportional to the conditional probability
of experiencing such an extreme loss over day ti.
For positive value of ζs, the observed magnitude
of the extreme losses shall, hence, increase in
periods where the frequency of extreme losses rises.
The conditional density for the magnitude of loss
over the threshold u (i.e., the threshold exceedance
yi − u) is given by the GP density:

g
(
yi − u|yi > u, xi,Fti−1

)
=

1

σi

(
1 + ξ

yi − u
σi

)−1/ξ−1

+

. (23)

The unknown parameters of the model can be
estimated using the Maximum Likelihood (ML)
method. Note that the parametric specifications
of f(xi|Fti−1) and g(yi|xi,Fti−1) have already
been introduced – see (10) for the Weibull-LACD
model, (12) for the Burr-LACD model, (18) for
the discrete-Weibull-LACD model, and (19) for
the discrete-Burr-LACD model when specifying
f(xi|Fti−1

). Based on the realized sample path
{xi, yi}i=1,...,n, the log likelihood function of
the discrete-duration LACD-POT model can be
derived as

L =

n∑
i=1

[
ln
(
f(xi|Fti−1

)
)

+

+ ln
(
g
(
yi − u|yi > u, xi,Fti−1

) )]
(24)

Note that (18)–(21) provide the grounds for
deriving the parametric form of a conditional
hazard function in line with (16). The conditional
hazard function corresponds to the conditional
probability of an extreme event over the t-th
day, given information set up to t − 1, namely
Pr(Yt > u|Ft−1) = h(x(t)|FtN̆(t)

). Hence, at (t−1),
the one-day-ahead forecast of VaR can be derived
as follows:

yτ,t =

( τ

h(x(t)|FtN̆(t)
)

)−ξ
− 1

 σN(t)

ξ
+ u.

5. Estimation results and diagnostic checks

For each of the stock indexes and the thresh-
old û exposing the 5% largest negated returns we
estimated four specifications of the LACD-POT
models. These are, namely the Weibull-LACD-
POT and the Burr-LACD-POT model, as well
as their two discrete counterparts: the discrete-
Weibull-LACD-POT and the discrete-Burr-LACD-
POT model. The threshold u was set equal to
the 95%-quantile of negated returns in order to
achieve a reasonable compromise between the suffi-
cient amount of observations for the robustness of
estimates, and the reliable assumption of the GP
distribution for excessive extreme losses. The latter
has also been validated with the D-test [22].
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TABLE IML parameter estimates of the discrete-Burr-LACD POT model. T-ratios given in brackets.

DAX 30 FTSE 100 Hang Seng IDX S&P 500 TOPIX
Model for the probability of threshold exceedances

ω 9.186 0.694 0.940 0.532 0.368 0.985
(3.750) (4.089) (5.011) (2.839) (3.779) (2.299)

α 0.318 0.230 0.297 0.221 0.260 0.236
(7.281) (5.081) (5.066) (5.221) (6.571) (3.663)

β 0.609 0.520 0.414 0.597 0.621 0.432
(11.643) (6.520) (2.980) (7.133) (11.075) (2.222)

ζ −0.081 −0.196 −0.178 −0.116 −0.126 −0.100

(−2.542) (−4.027) (−3.543) (−2.457) (−4.430) (−2.466)
κ 0.869 0.900 0.863 0.794 0.930 0.864

(16.172) (14.773) (13.144) (12.733) (15.821) (15.728)
η 0.264 0.334 0.313 0.253 0.255 0.349

(2.794) (3.232) (2.532) (1.501) (2.686) (3.489)
Model for the sizes of threshold exceedances

ωs 0.515 0.298 0.480 0.253 0.282 0.346
(8.599) (6.383) (5.529) (5.588) (5.609) (5.429)

ζs 4.736 5.532 6.867 3.636 5.189 4.845
(6.329) (7.443) (6.890) (5.790) (7.255) (6.139)

ξ 0.103 0.089 0.245 0.186 0.127 0.140
(1.915) (1.448) (3.846) (2.926) (2.505) (2.784)

Fig. 6. Discrete-Burr-LACD-POT estimates for
the DAX index in 2005-2008. Vertical lines denote
days of extreme losses.

For both scale factors in all of considered spec-
ifications we relied on the same functional form:
(i) Ψi for the conditional distribution of inter-
threshold-exceedance durations (8), and (ii) σi for
the conditional distribution of threshold exceedance
magnitudes (22), where the functional form of
h(xi|Fti−1

) was derived in line with the choice
of the conditional distribution for the durations.
The data set was split into an in-sample period
(Jan. 1981–Dec. 2015) used for model estimation
and an out-of-sample period (Jan. 2016–Sep. 2019)
serving only evaluative purposes. Table I presents

the estimation results corresponding to the discrete-
Burr-LACD-POT model. The log-likelihood func-
tion was pre-programmed and maximised using
the BFGS algorithm of the constrained maximum
likelihood (CML) application of the Gauss math-
ematical and statistical system. With some rare
exceptions, all the parameter estimates are statisti-
cally different from zero. Apart from positive and
statistically significant coefficients α̂ and β̂ that re-
flect positive autocorrelation in durations, we doc-
ument a negative impact of the magnitude of pre-
viously observed extreme loss on the waiting time
to the next extreme event (ζ̂ < 0) for all stock in-
dexes. Hence, large magnitudes of losses tend to
increase the awaited arrival rate of subsequent ex-
treme losses. We obtained decreasing hazard func-
tions as κ̂ < 1, which remains in line with a strong
clustering of extreme losses. Moreover, we can
see that for all equity indexes under investigation,
the awaited magnitude of extreme losses is boosted
by the probability of experiencing a huge loss over
that day (ζ̂s > 0).

Figure 6 illustrates the functioning of
the discrete-Burr-LACD-POT model based on
its estimated time-varying components. For
the sake of lucidity, the time evolution of Ψ̂t,
ĥ(x(t)), and σ̂t was plotted only for the DAX
index over a short five-year subperiod between
Jan. 2005 and Dec. 2008. The obtained plot of Ψ̂t

is a step function that features jumps only at days
directly following extreme losses. In turbulent
periods, when the distribution of extreme-loss days
is dense, the scale parameter of the discrete Burr
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TABLE IIBIC for the LACD-POT models.

Conditional
distribution

DAX 30 FTSE 100 Hang Seng IDX S&P 500 TOPIX

Weibull 9.431 9.066 10.021 8.700 8.974 9.054
Burr 9.336 8.954 9.910 8.634 8.897 8.903
discrete Weibull 9.196 8.850 9.789 8.490 8.792 8.801
discrete Burr 9.186 8.832 9.779 8.497 8.785 8.777

Fig. 7. VaR forecasts for τ = 0.01 from the discrete-Burr-LACD-POT model and daily negated log returns
from six equity indexes between Jan. 1981 and Sep. 2019. Shadowed areas denote the out-of-sample periods.

distribution wanders down in stepwise motion
whereas very long inter-exceedance durations in-
duce a jump in the upward direction. The plot
of the hazard function ĥt combines the evolution
of Ψ̂t with the downward sloping baseline hazard
in-between any two subsequent extreme-loss days.
Hence, the conditional probability of observing an
extreme loss over the next day climbs if driven by
preceding extreme losses — both in terms of their
times and magnitudes. It also monotonically de-
cays instantaneously after an extreme loss is ex-
perienced, which causes a clustering of the days
of extreme loss. The scale parameter of the GP
distribution keeps changing its level in reaction to
upward and downward jumps of the hazard func-
tion (i.e., only at days following extreme losses).
All of these factors contribute to the time evolu-
tion of the VaR, that was depicted in the lowest
panel of Fig. 6.

The goodness-of-fit tests confirmed the validity
of the conditional GP distribution for the magni-
tudes of threshold exceedances. We relied on two
diagnostic tools: the D-test proposed in [26] and

the χ2 test for uniformity of probability integral
transforms (PIT). To conserve space, we do not re-
port the detailed results here. However, both of
these tests were not able to reject the null hypothe-
sis that the conditional distribution of the threshold
exceedances corresponds to the GP distribution.

In order to determine the superiority of
the discrete-Burr-LACD-POT model, Table II com-
pares the Bayesian information criteria (BIC) for
all models under investigation. For five out of
six stock indexes, the BIC achieved the smallest
value for the discrete-Burr-LACD model, pinpoint-
ing the best goodness of fit. The only excep-
tion is the IDX, where the discrete-Weibull-LACD-
POT model rendered the best fit among the four
specifications. Apart from the case of the IDX,
the discrete-Weibull-LACD-POT model turned out
to be the second best in our study. There is also
a considerable difference in the BIC value among
the models based on the continuous distributions
for inter-exceedance durations and those based on
discrete distributions, whereas the latter solution
allows for a better goodness of fit.
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TABLE III

In-sample results from VaR backtesting procedures. The columns entitled “UC” and “CC” include the p-values of
the UC and CC tests, respectively. The average VaR levels correspond to the negated log returns pre-multiplied
by 100.

τ

Weibull
LACD-POT

Burr
LACD-POT

Discrete Weibull
LACD-POT

Discrete Burr
LACD-POT

UC CC VaRτ UC CC VaRτ UC CC VaRτ UC CC VaRτ

D
A
X

30

0.05 0.979 0.518 2.02 0.721 0.053 2.00 0.945 0.790 1.99 0.906 0.906 1.98
0.025 0.723 0.532 2.55 0.673 0.079 2.50 0.752 0.864 2.50 0.961 0.423 2.48
0.01 0.035 0.035 3.32 0.151 0.036 3.21 0.035 0.108 3.23 0.077 0.076 3.19
0.005 0.048 0.142 3.95 0.691 0.051 3.80 0.099 0.257 3.84 0.242 0.504 3.78
0.0025 0.293 0.576 4.63 0.293 0.049 4.44 0.293 0.576 4.48 0.080 0.216 4.40
0.001 0.462 0.763 5.61 0.702 0.929 5.35 0.462 0.763 5.42 0.702 0.929 5.31

F
T
SE

10
0

0.05 0.704 0.370 1.63 0.275 0.033 1.62 0.527 0.191 1.61 0.195 0.406 1.61
0.025 0.233 0.245 2.02 0.206 0.120 1.98 0.446 0.625 1.99 0.182 0.300 1.98
0.01 0.540 0.104 2.57 0.868 0.156 2.50 0.468 0.728 2.52 0.402 0.078 2.49
0.005 0.055 0.003 3.03 0.666 0.366 2.93 0.114 0.082 2.95 0.452 0.277 2.91
0.0025 0.265 0.040 3.52 0.846 0.114 3.39 0.175 0.026 3.41 0.265 0.040 3.35
0.001 0.630 0.011 4.23 0.093 0.001 4.04 0.630 0.011 4.06 0.630 0.011 3.98

H
an

g
Se

ng

0.05 0.026 0.007 2.40 0.015 0.001 2.39 0.018 0.060 2.40 0.009 0.028 2.40
0.025 0.129 0.004 3.01 0.369 0.086 2.96 0.045 0.132 2.97 0.084 0.178 2.95
0.01 0.185 0.175 3.98 0.700 0.232 3.86 0.122 0.278 3.89 0.151 0.331 3.85
0.005 0.184 0.141 4.89 0.391 0.270 4.69 0.242 0.180 4.75 0.184 0.141 4.67
0.0025 0.698 0.109 5.96 0.545 0.833 5.67 0.545 0.088 5.76 0.409 0.068 5.65
0.001 0.777 0.961 7.69 0.777 0.961 7.23 0.549 0.836 7.40 0.549 0.836 7.22

ID
X

0.05 0.003 0.000 1.49 0.054 0.000 1.45 0.000 0.002 1.48 0.001 0.002 1.47
0.025 0.070 0.001 1.79 0.416 0.000 1.73 0.095 0.232 1.77 0.082 0.094 1.75
0.01 0.083 0.015 2.27 0.625 0.436 2.17 0.295 0.539 2.21 0.295 0.539 2.18
0.005 0.085 0.063 2.69 0.289 0.196 2.56 0.221 0.155 2.59 0.221 0.155 2.55
0.0025 0.089 0.013 3.18 0.327 0.051 3.00 0.327 0.051 3.03 0.145 0.022 2.98
0.001 0.850 0.016 3.94 0.850 0.016 3.69 0.850 0.016 3.71 0.850 0.016 3.64

S&
P

50
0

0.05 0.010 0.008 1.64 0.013 0.000 1.63 0.008 0.028 1.63 0.012 0.010 1.63
0.025 0.084 0.120 2.02 0.932 0.051 1.99 0.270 0.483 1.99 0.531 0.420 1.98
0.01 0.436 0.107 2.58 0.807 0.183 2.52 0.726 0.928 2.52 0.269 0.245 2.50
0.005 0.582 0.860 3.04 0.242 0.504 2.97 0.691 0.924 2.96 0.691 0.924 2.93
0.0025 0.293 0.576 3.55 0.545 0.833 3.46 0.130 0.319 3.43 0.201 0.441 3.40
0.001 0.777 0.961 4.29 0.365 0.663 4.19 0.549 0.836 4.12 0.777 0.961 4.09

T
O
P
IX

0.05 0.114 0.002 1.84 0.166 0.000 1.80 0.198 0.298 1.82 0.138 0.059 1.81
0.025 0.168 0.034 2.29 0.855 0.004 2.23 0.334 0.568 2.26 0.369 0.086 2.24
0.01 0.502 0.122 2.97 0.859 0.225 2.87 0.573 0.448 2.91 0.375 0.324 2.87
0.005 0.032 0.026 3.54 0.805 0.443 3.42 0.070 0.057 3.46 0.184 0.141 3.40
0.0025 0.080 0.013 4.18 0.515 0.144 4.05 0.545 0.088 4.06 0.861 0.126 3.99
0.001 0.549 0.026 5.12 0.365 0.025 5.00 0.549 0.026 4.93 0.777 0.024 4.86

The superiority of the discrete-distribution-
LACD-POT models has also been evidenced us-
ing VaR backtesting methods. Two widely recog-
nized VaR verification procedures were performed:
the unconditional coverage (UC) test [37] and
the conditional coverage (CC) test [1]. Note that
VaRτ,t+1 is intended to reflect a ’promise’ that
the actual return at t+1 will be worse than VaRτ,t+1

for an average τ×100% of the time. Both backtest-
ing methods rely on the comparison of ex ante (i.e.,

one-day-ahead) VaR predictions and actual returns
over a given period of time. A VaR exceedance oc-
curs when an actual loss is larger than the VaR fore-
casted for that day. The null hypothesis of the UC
test states that the fraction of VaR exceedances
(i.e., actual losses that exceeded the one-step-ahead
forecasts of VaR) according to a risk model, matches
the assumed VaR probability level τ (i.e., the cover-
age probability for VaR). The CC test additionally
points toward the issue of independence by focusing
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TABLE IV

Out-of-sample results from VaR backtesting procedures (Symbol “–” means that the test could not be performed).
The columns entitled “UC” and “CC” include the p-values of the UC and CC tests, respectively. The average VaR
levels correspond to the negated log returns pre-multiplied by 100.

τ

Weibull
LACD-POT

Burr
LACD-POT

Discrete Weibull
LACD-POT

Discrete Burr
LACD-POT

UC CC VaRτ UC CC VaRτ UC CC VaRτ UC CC VaRτ

D
A
X

30

0.05 0.070 0.167 1.82 0.567 0.348 1.71 0.237 0.415 1.78 0.180 0.231 1.73
0.025 0.066 0.184 2.29 0.613 0.191 2.14 0.108 0.274 2.23 0.349 0.449 2.16
0.01 0.091 0.239 2.97 0.802 0.969 2.76 0.091 0.239 2.88 0.192 0.427 2.78
0.005 0.679 0.918 3.52 0.679 0.918 3.27 0.357 0.654 3.42 0.679 0.918 3.29
0.0025 0.770 0.958 4.13 0.294 0.577 3.82 0.770 0.958 3.99 0.294 0.577 3.84
0.001 0.981 1.000 5.00 0.981 1.000 4.62 0.981 1.000 4.82 0.981 1.000 4.63

F
T
SE

10
0

0.05 0.005 0.001 1.52 0.021 0.000 1.43 0.008 0.002 1.48 0.021 0.006 1.44
0.025 0.108 0.150 1.87 0.168 0.039 1.73 0.066 0.091 1.82 0.168 0.039 1.74
0.01 0.348 0.068 2.38 0.557 0.118 2.15 0.557 0.841 2.30 0.557 0.841 2.17
0.005 0.357 0.654 2.80 0.679 0.918 2.51 0.357 0.654 2.69 0.679 0.918 2.51
0.0025 0.770 0.958 3.25 0.730 0.942 2.88 0.730 0.942 3.10 0.730 0.942 2.88
0.001 0.981 1.000 3.89 0.365 0.663 3.42 0.981 1.000 3.69 0.981 1.000 3.41

H
an

g
Se

ng

0.05 0.003 0.012 2.08 0.003 0.012 2.04 0.005 0.020 2.07 0.001 0.004 2.06
0.025 0.169 0.232 2.55 0.066 0.092 2.48 0.250 0.334 2.51 0.169 0.232 2.49
0.01 0.036 0.110 3.30 0.193 0.428 3.18 0.036 0.110 3.22 0.036 0.110 3.17
0.005 0.032 0.100 3.99 0.032 0.100 3.82 0.032 0.100 3.87 0.032 0.100 3.80
0.0025 0.295 0.577 4.81 0.295 0.577 4.57 0.295 0.577 4.65 0.295 0.577 4.55
0.001 0.981 1.000 6.14 0.981 1.000 5.78 0.981 1.000 5.91 0.981 1.000 5.75

ID
X

0.05 0.572 0.142 1.53 0.307 0.014 1.51 0.239 0.136 1.52 0.307 0.059 1.52
0.025 0.745 0.084 1.86 0.471 0.017 1.81 0.772 0.959 1.83 0.772 0.959 1.82
0.01 0.091 0.240 2.36 0.487 0.785 2.28 0.559 0.843 2.30 0.804 0.970 2.28
0.005 0.358 0.656 2.81 0.957 0.999 2.69 0.138 0.333 2.71 0.358 0.656 2.69
0.0025 – – 3.33 0.295 0.577 3.17 0.295 0.577 3.19 – – 3.15
0.001 – – 4.14 – – 3.90 – – 3.91 – – 3.86

S&
P

50
0

0.05 0.000 0.000 1.76 0.000 0.000 1.60 0.000 0.000 1.71 0.000 0.000 1.63
0.025 0.066 0.096 2.19 0.248 0.071 1.92 0.108 0.157 2.11 0.108 0.157 1.97
0.01 0.557 0.118 2.83 0.802 0.173 2.40 0.348 0.068 2.68 0.802 0.173 2.47
0.005 0.679 0.918 3.37 0.959 0.049 2.81 0.959 0.049 3.17 0.959 0.049 2.89
0.0025 0.294 0.577 3.95 0.152 0.018 3.26 0.770 0.958 3.69 0.361 0.659 3.35
0.001 0.981 1.000 4.80 0.101 0.261 3.92 0.981 1.000 4.45 0.101 0.261 4.02

T
O
P
IX

0.05 0.180 0.353 1.82 0.135 0.292 1.83 0.469 0.565 1.80 0.135 0.292 1.82
0.025 0.907 0.889 2.28 0.472 0.573 2.26 0.604 0.828 2.25 0.768 0.791 2.26
0.01 0.348 0.068 2.95 0.489 0.228 2.91 0.557 0.118 2.91 0.941 0.220 2.90
0.005 0.959 0.999 3.53 0.625 0.888 3.47 0.959 0.999 3.46 0.959 0.999 3.44
0.0025 0.361 0.659 4.17 0.361 0.659 4.10 0.730 0.942 4.06 0.730 0.942 4.03
0.001 0.981 1.000 5.11 0.981 1.000 5.06 0.365 0.663 4.94 0.981 1.000 4.91

on the Markov property of VaR exceedances. Thus,
according to the null of the CC test, the proportion
of losses that are larger than the VaR according to
a risk model is equal to the coverage probability for
VaR (τ) and the VaR exceedances are independent
over time.

We forecasted one-day-ahead VaR at different
levels of τ (i.e., τ ∈ {0.05, 0.025, 0.01, 0.005,
0.0025, 0.001}), for each of four LACD-POT mod-
els, both in-sample and out-of-sample. Figure 7

illustrates the plots of obtained VaR forecasts at
τ = 0.01. Table III presents the p-values from
implementations of the UC and CC tests as well
as the average VaR levels for the negated log re-
turns pre-multiplied by 100, for the in-sample pe-
riod (VaRτ ), and Table IV covers similar infor-
mation for the out-of-sample period. The in-
sample backtesting results do not stay in favour of
the Weibull-LACD-POT model. Using 0.05 signifi-
cance level for the test statistics, the VaR numbers
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based on Weibull-LACD-POT models are misspec-
ified in six instances of UC test implementations
(out of 36 in general), because the null of the cor-
rect coverage had to be rejected. In the case of
the Burr-LACD-POT model the null had to be re-
jected only two times. Generally, based on the re-
sults of the CC test, the discrete-Weibull-LACD-
POT models render VaR numbers with a much
better goodness of fit than the standard Weibull-
LACD-POT models. Similarly, the discrete-Burr-
LACD-POT models turn out to be better than the
Burr-LACD-POT models. In the case of the Burr-
LACD-POT (Weibull-LACD-POT) models, in sam-
ple, in 12 (17) implementations of CC test, p-values
were less than 0.05. However for its augmented
version that accounts for the discreteness of inter-
exceedance durations after implementing the dis-
crete Burr (discrete Weibull) distribution, the null
was rejected in only 8 (6) cases. For the out-of-
sample period, which is much shorter (it covers only
about 3.5 years), the results are not so unambigu-
ous. The CC null had to be rejected in 8 (3) imple-
mentations of the test for the Burr-ACD-POT VaR
model (Weibull-LACD-POT) and in 5 (4) instances
for the discrete Burr-LACD-POT (discrete-Weibull-
LACD-POT) models.

A final major observation from our analysis is
that in the LACD-POT models augmented with
the discrete distributions for inter-exceedance dura-
tions the average levels of VaR are evidently lower
than the corresponding average VaR levels derived
from the standard LACD-POT models. In the case
of the discrete Weibull distribution this observation
holds true for all stock indexes and for all cover-
age probability levels τ , both in- and out-of-sample.
Accordingly, the better fit of VaR forecasts derived
from the augmented LACD-POT model does not
come at the cost of higher VaR numbers. This
observation also means that the discrete-Weibull-
LACD-POT model does not imply higher capital
reserves for covering market risk when being used
by financial institutions. In the case of the discrete-
Burr-LACD-POT models these results are not so
clear — the average VaR levels are lower than
the corresponding values for DAX 30, FTSE 100
and S&P 500 (in-sample). For the rest of indexes,
this property holds true only at low coverage levels
(i.e., for τ = 0.005 or lower).

6. Conclusions

Forecasting extreme returns stays at the forefront
of both econometrics and econophysics because it
allows for effective management of market risk.
Adequate econometric tools for modeling extreme
losses should account for their clustering in time.
This study has proposed a new discrete-duration
POT model that is suitably tailored for the integer-
valued times between extreme losses. Our model is
inspired by the ACD-POT approach used in [10–12].
However, we describe the conditional distribution of

times between extreme losses in a different fashion
— we use the discrete Weibull and the discrete Burr
distribution. Similarly to the original ACD-POT
approach, the conditional distribution of time inter-
vals between extreme losses in our model is time-
varying, characterized by an observation-driven
scale parameter that accommodates any changes in
the arrival rate of extreme losses. The magnitudes
of extreme losses are depicted by the conditional
GP distribution with the scale parameter that de-
pends on the conditional probability of experiencing
an extreme loss over that day. Based on empirical
data for six international stock indexes, we com-
pared the goodness of fit for the discrete-Weibull-
LACD-POT and discrete-Burr-LACD-POT models
with their continuous-duration counterparts. Based
on BIC, we provided an evidence of the superiority
of the LACD-POT models augmented with the dis-
crete conditional distributions for inter-exceedance
durations. The backtesting methods for VaR ob-
tained with discrete-duration LACD-POT model
also stayed in its favour. The performance of this
novel model sheds new light on econometric mod-
els of extreme risk but requires more investiga-
tion. Further extensions can focus on different dis-
crete distribution families for inter-exceedance time
spans or different specifications of scale parameters.
A more thorough exploration is also needed in terms
of other types of financial data and a wider range
of VaR backtesting methods.
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