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Taylor’s law of fluctuation scaling is a power-law relationship between a variance and a mean. It has
been observed in a wide range of disciplines, ranging from population dynamics through the Internet
to the stock market. To explain origins of the law, a number of theoretical approaches have been
proposed. Here, we discuss applicability of one of them, the maximum entropy-based formalism, to
non-equilibrium stationary states. In addition to analyzing several real time series, we show that
a simple model of transport of packets in communication networks also exhibits Taylor’s law and could
serve as a good testbed for verification of the formalism. We draw attention of the complex system
community to the Bell polynomials that turn out to be very well suited for studying systems that
exhibit Taylor’s law.
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1. Introduction

For the first time, Taylor’s fluctuation scaling was
observed in ecology [1] as the species-specific power-
law relationship between the temporal or spatial
variance σ2 of populations, and their mean abun-
dances 〈N〉:
〈N2〉 − 〈N〉2 = a〈N〉b, (1)

where the characteristic exponent b describes effects
of heterogeneity in spatial or temporal patterns of
the frequency distribution. The exponent was of
particular interest as it served as an index of aggre-
gation: (i) b ' 0 implies a nearly regular distribu-
tion, (ii) b = 1 suggests a random (Poisson) distri-
bution, and (iii) b > 1 indicates higher degrees of
aggregation. In the vast majority of observations,
the value of b is in the range between 1 and 2.

Apart of ecology, Taylor’s law also manifests
with other seemingly disparate processes such as
the transmission of infectious diseases [2], hu-
man sexual behavior [3], cancer metastases [4],
blood flow heterogeneity [5], as well as traffic on
highways [6] and crime statistics [7]. Recently,
when a huge amount of data has become avail-
able in Internet, Taylor’s fluctuation scaling has
aroused interest among physicists and computer
scientists [8, 9]. Prevalence of Taylor’s law was
demonstrated in a number of virtual systems, in-
cluding the Internet and the world wide web [9].
Simultaneously with the observations of Taylor’s
law a vast amount of models has been developed —
ranging from animal behavior [10], a random walk

model [11] or a stochastic birth, death, immigra-
tion and emigration model [12] — each specific to
one individual situation. But given such a broad
applicability, one might ask whether some general
principle might be at the basis of all these processes.
Is there a mechanism able to explain the manifes-
tations of Taylor’s law without going into details of
a particular system?

One possible mathematical explanation for
the origin of Taylor’s law is given by a class
of Tweedie exponential dispersion models [13].
In analogy to the central limit theorem that governs
the convergence behavior of certain types of random
data, the Tweedie convergence theorem implies that
Taylor’s law results from a general mathematical
convergence effect observed in Tweedie models.

In [6], Taylor’s law has been derived from
the maximal entropy principle (MEP) which is also
a basis of equilibrium and non-equilibrium sta-
tistical physics - the approach that seems to be
much more attractive and intuitive for physicists.
In [6], the relation of the aggregation phenomena
to the power law exponent b has been explained
through the well-defined density of states (DOS)
function that encodes the distribution of system el-
ements into clusters. The approach has been ver-
ified in a number of ecological, technological and
economical systems.

The aim of this paper is twofold. Firstly,
we demonstrate that the MEP-based formalism
(naturally arising in the study of fluctuations
in equilibrium ensembles) works well also in
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non-equilibrium stationary states and can explain
temporal fluctuations. Secondly, since the available
real data are limited and noisy, we adopt a simple
model of transport of packets in communication net-
works that exhibits Taylor’s temporal fluctuation
scaling and could serve as a good testbed for the ver-
ification of the theoretical MEP-based model. Since
the model exhibits continuous phase transition, we
are also able to investigate aggregation phenomena
and the way they are reflected in the discussed for-
malism in the vicinity of the critical point.

The outline of the paper is as follows. First,
we describe real datasets which we use in our further
analysis. Then, we introduce the model of packets
traveling through the network. Next, we present
theoretical analysis of MEP-based formalism and
verify its elements against the real data and numer-
ical time series obtained from the model. Finally,
we shortly conclude the obtained results.

2. Data description

We have analyzed three datasets related to three
different human activities on the Internet.
• Web page visits. Dataset came from the visi-
tor statistics system of the NI Direct website [14],
the official government website for Northern Ireland
citizens. It contains daily visits of web pages in
the period from 1st January 2018 to 31st March
2018. The short period ensures data stationarity.
From all web pages we discarded those with time
series containing zeroes (probably for some reasons
inactive in the course of the analyzed period). In to-
tal, we had 1516 time series, each consisting of
90 ticks (days of 1st Quarter 2018). Taylor’s law
for these time series is shown in Fig. 1a.
• Blogs. Data represent weekly numbers of RSS
feeds from more than 14000 blogs from various plat-
forms (mainly MSN Spaces) [15]. Each time se-
ries represents a single blog and contains 20 ticks
spanning the period of 20 weeks. Once again,
the period is sufficiently short to avoid the prob-
lem of nonstationarity (i.e., increasing trend of
the use of blogs). To eliminate blogs which be-
come inactive in the course of the period we se-
lect only such time series which do not contain ze-
roes (i.e., each week there is non zero number of
posts). Finally we had 1413 series in the period
from 28.09.2007 to 14.02.2008, 1177 series in the pe-
riod from 15.04.2008 to 1.09.2008, 1045 series in
the period from 16.11.2008 to 4.04.2009 and 663 se-
ries in the period from 7.07.2009 to 23.11.2009.
In total, we had 4298 time series for which we
can calculate the mean and variance resulting in
Taylor’s law shown in Fig. 1b.
• Packets. The data are measurements made on
each packet of information that passes through
the University of Auckland Internet Gateway [15].
These measurements include a timestamp that
represents the time at which the packet reached
the network location, and the size of the packet,

Fig. 1. Taylor’s power law for scaling of fluctua-
tion observed in: (a) web page visits, (b) blogs, (c)
packets, and (d) the model of packet transport in
the network of N = 500 nodes and m = 1, k = 20
(open squares) and m = 2, k = 60 (open circles).

as a number of kilobytes. After data preprocessing,
we obtained time series containing 20000 numbers
spanning the period of 20 s (kB/ms). The period
is sufficiently short to avoid the problem of non-
stationarity (daily variation in traffic load). Tay-
lor’s law for these data is shown in Fig. 1c. Please
note, that since we had one time series only, we ob-
tained points presented in Fig. 1c using the method
of expanding bins [16] which will be described later.

3. Model of packet transport
in communication networks

In the basic models frequently used to mimic
transport phenomena in communication networked
systems [17–19], all M nodes in a network are
equally considered as hosts and routers for gener-
ating and delivering packets. At each time step,
there are R packets generated in the system, with
randomly chosen sources and destinations (here, for
simplicity, we assume R = 1). During the next
time steps packets travel randomly (as a simple non-
preferential random walk) around the network, and
look for their destination-nodes. Once a packet ar-
rives at its target, it is removed from the system.
If there are no other constrains, such as limited abil-
ity of nodes to distribute a large number of packets,
the system evolves to a non-equilibrium stationary
state. In such a state the number of packets ni(t)
in a given node i fluctuates around its mean value
〈ni〉 with a variance σ2

i . On the other hand, if nodes
can deliver at most C packets per time step towards
their destinations, then a critical capacity Ccrit ex-
ists at which a continuous phase transition from free
flow state to congested state occurs. In this jammed
state, the number of packets accumulated in a node
increases with time due to the limited delivering
capacity.
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In this paper, we use the well-known Barabási-
Albert (BA) model [20] to generate the topology of
the underlying network. In the BA model one starts
fromm0 fully connected nodes, and new nodes, with
m edges each, are added sequentially to the existing
nodes with the preference proportional to their de-
grees k. The growth process is stopped when the fi-
nal network size is M . In our analysis, we need to
extend the BA model a bit. Namely, we allow m
to be non-integer value. Such values of m can be
attained by adding a new node with dme edges (i.e.,
ceiling function, least integer greater than m) with
probability m + 1 − dme, and with dme − 1 edges
otherwise.

Despite its simplicity, the BA model is a minimal
model that reproduces the two important aspects
observed in real networks: power-law function for
the node degree distributions and small world effect
understood as a fact that most pairs of nodes in real
networks are connected by a relatively short path.
As an additional advantage of this model, especially
in the context of transport phenomena, one can rec-
ognize the fact that there is only one component in
the network and no separated nodes exist (unlike
other models that also reflect the first two aspects
of real networks, e.g. configurational model [21] or
exponential random graph model [22]).

Having the structure of underlying network es-
tablished, we start to generate new packets. Let us
assume for now, that the node capacity C → ∞.
The number of packets in the network n(t) initially
increases, but after some transient time tinit it sat-
urates and start to fluctuate around some mean
value 〈n〉. Now, starting from tinit, we construct
M time series Λi,1, where each Λi,1 (the subscript 1
is used to ensure consistency with further labeling)
represents the number of packets ni(t) in the node i
and tinit < t < tmax. The length of each time series
is then Li = tmax − tinit.

To analyze Taylor’s law in these time series
(as well as, in datasets coming from real measure-
ments, see Fig. 1c) we use the method of expanding
bins [26]. In this method, a time series Λi,1 is di-
vided into a set of non-overlapping bins of size s,
where 1 ≤ s � Li. Then, a new time series Λi,s
of length Li/s is constructed, in which each ele-
ment is just a sum of packets in a respective bin.
Now, one can calculate mean and variance for dif-
ferent s. In Fig. 1d, we present fluctuation scal-
ing obtained by this method for two different nodes
with degree k = 20 and k = 60 in two different
networks with M = 500 and m = 1 and m = 2,
respectively.

It is worth to discuss for a moment the differences
in power-law exponent b that are visible in Fig. 1d.
To understand these differences we have calculated
b for all the nodes in the network and verify its de-
pendency on the node degree ki. We have also per-
formed such an analysis for networks that differ in
the parameter m. The results of the both analyses
are presented in Fig. 2.

Fig. 2. Scaling exponent b in Taylor’s power law
for different node degrees k in three different net-
works with M = 500 and m = 1 (red triangles),
m = 1.5 (blue squares), and m = 2 (green circles).
Black lines and points show b-value averaged over
similar node degree and logarithmically binned.

The most striking observation is that the expo-
nent b is negatively correlated with the network den-
sity. The largest values of b have been obtained for
tree-like networks with m = 1. For m � 1, b → 1,
and the load fluctuations become Poissonian. More-
over, the node degree seems to play a secondary role
in a variability of b, which, averaged over nodes
with the same degree, is constant for k > 10 see
black lines in Fig. 2). At first glance, the disper-
sion of b around its mean value for a given node
degree should be related to the differences in local
neighborhood of a node. However, we have studied
b−dependence on the average nearest neighbor node
degree for all the nodes with k = 1 and did not find
any clear relationship. Thus, other non-local prop-
erties of nodes seem to be responsible for this dis-
persion (like betweenness centrality and other flow
related characteristics).

To summarize, the presented model of packet
transport exhibits the desired power law of fluctu-
ations with the exponent in a range 1 < b < 1.75,
what complies with the ubiquity of empirical Tay-
lor’s power-law slopes in the interval 1 < b < 2.
Moreover, since the lengths Li of time series are
almost unlimited, uncertainty of the further analy-
sis related to noisy and limited experimental data
can be effectively reduced.

4. Main analysis

In this section, we verify the elements of
the MEP-based formalism against the real and sim-
ulated data. To make this section readable we
must reproduce here (in shortened version) some
of the results of the paper [6], where the formalism
was presented for the first time.

General solution for the maximum entropy dis-
tribution P(Ω;µ) constrained to yield the average
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value of the parameter N (the number of counts,
e.g. packets or web page visits, over time) is
given by

P(Ω;µ) =
e−µN(Ω)

eF (µ)
, (2)

where µ stands for the external field coupled to N
that imposes a given value of 〈N〉, and eF (µ) is nor-
malization factor of the distribution. In statistical
physics, F (µ) represents the so-called free energy
of the considered system that encodes properties of
the system in equilibrium. In what follows, we also
call it free energy. Greek letter Ω in (2) refers to
the so-called microstate of the considered system,
whereas researchers studying real-world systems
are usually interested in macrostates and the cor-
responding macroscopic quantities. Macroscopic
states are characterized by the frequency distribu-
tion P (N ;µ) and the two introduced distributions
are related to each other by:

P (N ;µ) = g(N)P(Ω;µ), (3)
where g(N) is the announced density of state func-
tion (DOS), which gives the number of microstates
having the same value of the macroscopic param-
eter N . Given the above equations we assume
that the system can exchange its components with
a large reservoir in equilibrium. An answer to
the question: “What is reservoir and external field
µ in social systems?” is not simple. In the case
of web page visits we may say that there is a large
(constant in a considered time span) population of
Internet users who spent their time visiting differ-
ent web pages. A field µ can represent ability of
a given webpage to attract the users’ attention.

To make us sure that the above assumptions,
i.e., (2) and (3), are a good starting point for fur-
ther analysis we could perform a simple test (no. 1)
based on the observation that the quotient of two
frequency distributions corresponding to different
average values of 〈N〉 is an exponential function
of N , namely

P (N ;µ1)

P (N ;µ2)
∝ e(µ2−µ1)N . (4)

If we select two time series corresponding to differ-
ent parameters µ1 and µ2 (what imposes two differ-
ent means 〈N1〉 and 〈N2〉), then calculate respective
frequency distributions, and take their quotient,
we should get a straight line in the semi log plot of
the quotient as a function of N . Figure 3 presents
the results of this simple test with reference to both
real world datasets, as well as to the packet trans-
port model. As one can see, the results agree very
well with theoretical expectations.

In the following, we will try to find explicit for-
mula for frequency distribution P (N ;µ). To de-
rive this formula from (2) and (3) one has to know
the three following terms: the value of external field
µ corresponding to the given mean 〈N〉, functional
dependence F (µ) of free energy on µ, and the DOS
function g(N).

Fig. 3. Results of the test no. 1: (a) web pages
— parameters µ1 and µ2 correspond to the means
〈N1〉 = 5.234 and 〈N2〉 = 18.67 (red circles),
〈N1〉 = 10.10 and 〈N2〉 = 11.81 (blue squares), (b)
blogs — 〈N1〉 = 13.8 and 〈N2〉 = 25.0 (green cir-
cles), (c) packets — 〈N1〉 = 9.14 and 〈N2〉 = 59.39
(red circles), 〈N1〉 = 82.23 and 〈N2〉 = 164.5 (blue
squares), (d) model of packet transport — 〈N1〉 =
33.9 and 〈N2〉 = 56.51 (red circles), 〈N1〉 = 88.96
and 〈N2〉 = 148.3 (blue squares). The straight lines
are the best fitting by the least squares criterion.

Two first elements can be easily calculated ex-
ploiting another fundamental statistical physics for-
mula, i.e., fluctuation-dissipation relation. It is de-
fined by

〈N2〉 − 〈N〉2 = −∂〈N〉
∂µ

=
∂2F (µ)

∂µ2
, (5)

which states that fluctuations of the parameter N
are proportional to susceptibility of the parame-
ter to its conjugate field µ. Comparing right-hand
sides of (5) and (1), one obtains differential equa-
tion for 〈N〉, i.e., −∂〈N〉/∂µ = a〈N〉b. Solving this
equation, with the reasonable assumption of non-
negative variance, one obtains

〈N〉 =

{
X e−aµ for b = 1,

[(b− 1) aµ+X]
1/(1−b) for b > 1.

(6)

Here, X represents integration constant, which
could be later easily eliminated through the prob-
ability normalization. Next, having (6) and again
exploiting (5) by solving ∂F/∂µ = −〈N〉, one also
finds the formula for the free energy F (µ):

F (µ) =

{
1

a(2−b) 〈N〉
(2−b) + Y for b ≥ 1

1
a ln〈N〉+ Y for b = 2.

(7)

In the right hand side of (7), the parameter µ is ex-
pressed implicitly through 〈N〉. From the fact, that
in the empty system (i.e., when 〈N〉 = 0) there is
no energy at all, the integration constant Y can be
set to be equal to zero.

Before go further, to be sure that we are correct
about our assumptions (e.g. about applicability
of fluctuation-dissipation theorem to so unphysical
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Fig. 4. Results of the test no. 2. The indicated
line represents the y = x diagonal line.

systems as ours) and derivations so far, we can per-
form the test no. 2. Transforming the expression
for 〈N〉, one can show that the experimental data
should satisfy the identity

µ2 − µ1 =
〈N2〉1−b − 〈N1〉1−b

a(1− b)
= h (〈N1〉, 〈N2〉) .

(8)
The value of the left hand side of (8) can be eas-
ily extracted from the slope of the linear fit, which
is shown in Fig. 3. Taking many different pairs of
frequency distributions P (N ;µ1) and P (N ;µ2) one
can obtain a group of points which all should lie on
the straight line characterized by (8). The results of
the test are shown in Fig. 4. Once again, the agree-
ment with theoretical expectations is convincing.

The above derivations reveal the first two ele-
ments needed to find an explicit expression for fre-
quency distribution P (N ;µ). These elements are
the external field µ that corresponds to the mean
〈N〉, and the functional form of the free energy,
given by (6) and (7), respectively.

In fact, the third lacking element —DOS function
— is also accessible. In [6], a general combinatorial
formula for DOS function was presented:

g(N) ' e−N

N !
BN (f1, f2, . . . , fN ), (9)

where BN (f1, f2, . . . , fN ) is the N th complete Bell
polynomial whereas fn represents the coefficient of
the nth term in the MacLaurin expansion of the free
energy. Since the expression for the free energy (7)
is known, we can easily calculate fn, as the nth

derivative of F (µ) at µ = 0.
Now, before proceeding, we have to stop and ex-

plain more deeply the meaning of the complete Bell
polynomial, since for most of physicists it is un-
known combinatorial creature. In general, the N th

complete Bell polynomial, BN (f1, f2, . . . , fN ), de-
scribes the number of disjoint partitions of a set
of size N into an arbitrary number of subsets [23].
The parameters fi, with i = 1, 2, . . . , N , apply to
subsets of size i and play an important role in a
description of the partitions.

Fig. 5. Three examples of partitions of a set of
N = 8 elements. Detailed description is given in
the text.

For example, if the all parameters f1, f2, . . . , fN
have the same value, then there is no preference for
the size of subsets. The resulting partitions corre-
spond to a random distribution of elements, the dis-
tribution of subset sizes is uniform, and the fre-
quency distribution describing that system, P (N),
is Poissonian. On the other hand, in the extreme
case of fi � fj for all j 6= i, the Bell polynomial
gives the number of such partitions in which there
is a strong preference for subsets of size i.

To be better understood we present in Fig. 5,
three examples of partitions of a set of N = 8 ele-
ments. In each example there is a different prefer-
ence for the subset size. Since the number of ways
of partitions of even small set can be enormous,
we select from the whole ensemble of partitions ten
randomly chosen representatives. In Fig. 5a, all
f1, f2, . . . , fN have the same value and each par-
tition is composed of completely random clusters
(with the constrain that their total mass is N). Ex-
amples shown in Figs. 5b and 5c prefer subsets of
size 1 and 4, respectively.

Although the combinatorial expression for DOS
function (9) is general and can be applied to any sta-
tistical system, in the case of systems in which Tay-
lor’s law manifests itself, it is very meaningful. It’s
straight interpretation relates directly DOS func-
tion with the aggregation phenomena observed in
real world system.

Now, we can perform the final test (no. 3) as
we have already derived all necessary expressions
for evaluating the frequency distribution P (N ;µ).
The only problem is that the real world data
frequency distribution has to be estimated from
very few measurements (for example, we have 20
and 90 values in time series of blogs and page visits
respectively), which is completely insufficient. To
increase the amount of data from which a distribu-
tion is made, we have assumed that the neighbor-
ing points in the mean-variance graph result from
similar environmental conditions (i.e., from similar
values of the parameter µ). In this way, a single
smooth distribution possessing the given values of
〈N〉 and σ2

N has been prepared as a simple sum
of all the component distributions corresponding to
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Fig. 6. Theoretical (solid black line) and ex-
perimental (open squares) frequency distributions
P (N ;µ) as well as the Poisson distribution with
the same mean (dashed red line) for (a) web page
visits with 〈N〉 = 20.1, (b) blogs with 〈N〉 = 24.2,
(c) packets with 〈N〉 = 13.7, and (d) model of
packet transport with M = 500, m = 1, k = 1
and 〈N〉 = 34.

single points [〈Ni〉, σ2
Ni

] in the mean-variance graph,
and meeting the following conditions:
〈Ni〉
d

< 〈N〉 < d〈Ni〉 (10)

σ2
Ni

d
< σ2

N < dσ2
Ni
. (11)

Parameter d describes a linear size of the square
in the log-log plot in the mean-variance graph with
the central point of the square [〈N〉, σ2

N ] placed in
the solid line corresponding to the empirical Tay-
lors law. If d is chosen to be too small (d → 1),
then the square shrinks to the single point, what
leads to poor data sampling and noisy distribu-
tion. On the other hand, when the parameter d is
taken too large, the resulting distribution, P (N ;µ),
is made of distributions that characterize rather dif-
ferent environmental conditions. Although the ob-
tained distribution is smooth, it is not very reliable.
This reliability can be verified observing the shape
of the quotients P (N ;µ1)/P (N ;µ2) in Fig. 2. For
sufficiently small values of d the shape will be sta-
ble. Taking above into consideration we have cho-
sen d = 1.2. The above procedure allows us to in-
crease the number of points to several hundreds or
even more. Of course, the above procedure does
not apply to data generated using the model of
packet transport, where we are not limited by short
time series.

Now, we can proceed with the third test. Its re-
sults are shown in semi-log scale in Fig. 6. The fig-
ure consists of four parts — each of them presenting
different case. Each panel illustrates by comparison
the theoretical and experimental frequency distri-
butions P (N ;µ), as well as the Poisson distribu-
tion with the same mean. Taking into consideration

Fig. 7. The coefficients fn in the series expansion
of the free energy (9) for: (a) webpage visits (green
circles), blogs (blue squares) and packets (red trian-
gles), b) three different nodes in the model of packet
transport (parameters used are: N = 50, m = 3,
C = 1, R = 3) with degrees k = 6 (node A), k = 10
(node B), and k = 11 (node C).

the noisy environment in which the data have been
gathered, our theory seems to be in excellent agree-
ment with the data.

Finally, let us look closer at the coefficients fn in
the series expansion of F (µ). If the free energy (9)
is divided by n! (to remove distinguishability of
events), then fn’s may be interpreted as thermody-
namic preferences for clusters of size n = 1, 2, . . ..
Since we consider time series with temporal fluc-
tuations, one should remember that these clusters
are not spanned in space but they represent time
intervals with high intensity of human activity sep-
arated by the moments when none or small Internet
activity is present [24]. In Fig. 7a, these preferences
are presented for all real data sets in our collection.
They all behave in the same manner, namely they
are exponentially decreasing functions of n.

Such a behavior resembles the one observed in
the two-dimensional Ising model, where the coef-
ficients in the low temperature series expansion
of the free energy have a similar asymptotic be-
havior [25]. It was shown that the phase transi-
tion in the Ising model can be explained through
equivalence between the model and the perfect gas
of energy clusters model, in which the passage
through the critical point is related to the com-
plete change in the thermodynamic preferences on
the size of clusters. Below the critical tempera-
ture, i.e., in the ferromagnetic state, smaller en-
ergy clusters are characterized by higher prefer-
ences, while, above the critical temperature, the
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preferences monotonically increase as a function
of n. Phase transition occurs, when the preferences
do not depend on clusters’ size.

Although the real datasets do not allow us to
observe such a transition, in the model of packet
transport the phase transition from free flow state
to congested state is possible when the capacity C
of nodes is reduced [26]. Figure 7b presents the sit-
uation, when the system is in the critical state
C ∼ Ccrit. Please note, that in heterogeneous net-
works nodes of different degrees become congested
for different values of C [27]. It also means that
the system still possesses partial capacity for for-
warding packets in this phase, although as a whole,
it enters the jammed state even if one node is con-
gested. In Fig. 7b, coefficients fn for three different
nodes are presented. The node A of degree k = 6
is a node in which free flow of packets is still pos-
sible. The cluster preferences decay exponentially
in the same manner as in real data (see inset in
Fig. 7b). The flow in the node B (k = 10) is criti-
cal. Cluster preferences follow a power law function.
The node C (k = 11) is jammed. Although it does
not fulfill the condition of stationarity (the num-
ber of packets in the node slowly increases), one
can observe that the preference for large clusters
becomes meaningful. All nodes with the larger de-
grees are congested, and the above analysis could
not be performed.

5. Concluding remarks

In the paper, we have demonstrated applica-
tion of MEP-based formalism of Taylor’s fluctuation
scaling to temporal data. In addition to real data,
we also used data from the packet transport model
in complex network. Their advantage over real data
comes from the fact that these time series obtained
from the model do not have length limitations and,
because not influenced by external factors, their sta-
tistical properties such as mean, variance, autocor-
relation, etc., are all constant over time. The abil-
ity of the model to capture phase transition be-
tween free flow and congested state allowed us to
discuss the influence of the coefficients fn in the se-
ries expansion of the free energy of the system on
the clustering of time series. Finally, we believe
that the Bell polynomials approach, though almost
unnoticed by physicists who deal with complex sys-
tems, is well suited to the study of such clustered
systems. We hope that this work will bring this for-
malism a little closer to the complex system society.
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