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Interband Absorption and Luminescence
in InP/InAs/InP Spherical

Core/Shell/Shell Heterostructure
for Moderate Regime of Size Quantization
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The states of charge carriers in the spherical InP/InAs/InP core/shell/shell heterostructure are considered.
Consideration was carried out for the case of “moderate” quantization, when the energy of electrostatic interaction
of an electron and hole is comparable to the energy of their size quantization in an InAs layer. The analytical
form of the electron–hole interaction effective potential for the selected relations between the geometric sizes of the
sample is determined. The wave functions and energy levels of charge carriers in the presence of this potential are
calculated, too. It is shown that taking into account the electron–hole electrostatic interaction leads to an effective
narrowing of the width of the band gap of the sample. The values of this effective narrowing is calculated for
different values of the layer thickness. Interband optical absorption and photoluminescence in this heterostructure
are also considered. With increase of the layer thickness, the absorption and luminescence peaks are shifted to the
low frequency range of the absorbed or emitted light.
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1. Introduction

Along with many low-dimensional systems different
semiconductor spherical core/shell/shell (quantum dot-
quantum well) heterostructures have been studied inten-
sively both experimentally and theoretically during the
last three decades (see [1–10] and references therein).
In such layered structures the energy configuration of
charge carriers is defined by the geometric sizes of the
structure’s components and by the relations between
the corresponding physical parameters of contacting ma-
terials. Thus, one of the distinctive features of such
core/shell/shell nanomaterials is the compositional de-
pendence of their electronic, optical, kinetic and other
properties. From this point of view, the study of spher-
ical core/shell/shell structures with InP and InAs com-
ponents is of undoubted interest. This is due to the real-
ity that these semiconductor compounds are the most
widely used in various devices of solid-state electron-
ics. Moreover, they are used both separately [11–14] and
jointly [15–25] as components in the composition of vari-
ous composite heterostructures. The electron affinity Uc
and the band gap Eg for InP and InAs have the fol-
lowing values: Uc = −4.38 eV, Eg = 1.344 eV-for InP,
and Uc = −4.9 eV, Eg = 0.354 eV for InAs [26–35],
respectively.
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In the spherical core/shell/shell of the InP/InAs/InP
heterocomposite for these contacting materials the en-
ergy gap at the interface will be ∆Uc = 0.52 eV for
electrons of the conduction band and ∆Uv = 0.47 eV
for holes of the valence band, respectively. That is,
the InAs layer in this composition will act as quan-
tum well for the charge carriers. The Bohr radius of
bulk exciton for these materials has the following values:
aex = 10–12 nm for InP, and aex = 30–35 nm for InAs,
respectively [26–35]. In the presence of the above char-
acteristics of the InP/InAs/InP heterostructure’s com-
ponents the states of charge carriers will be determined
already by the relations between the geometrical dimen-
sions of the components of this structure.

In the previous work, the authors have considered
single-particle states and optical transitions in the spher-
ical core/shell/shell structure when the strong quan-
tization regime for charge carriers takes place in the
InP/InAs/InP structure in the strong quantization mode
for charge carriers in the InAs layer. In this case the layer
thickness L is much smaller than the Bohr radius of the
bulk exciton aex in the material of the layer. Accordingly,
the electrostatic interaction between the electron and the
hole can be neglected in comparison with the energy of
their size quantization in the layer [35].

In the present work, single-particle states and opti-
cal transitions in the spherical core/shell/shell structure
of the InP/InAs/InP heterocomposition are theoretically
investigated when the electrostatic interaction energy be-
tween an electron and a hole in InAs layer becomes com-
parable to their size quantization energy in the layer.
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2. Single-particle states
in core/shell/shell structure

Before proceeding to the theoretical calculations let
us bring material parameters of InP and InAs crystals.
Table I shows the necessary further characteristics of or-
dinary InP and InAs bulk crystals.

The sizes of the InP core and the outer InP shell will
be considered such (of the order of 25–35 nm) that an
electron and a hole can bind into a 3D exciton and the
quantum size effect is manifested already for 3D exci-
tons, but not for charge carriers. Let us turn now to the
consideration of charge carriers’ states in the InAs layer.
As it is well known, the quantum size effect, as well as
the exciton states, are most pronounced in the lower en-
ergy states. Accordingly, in further calculations, we will
consider only first two energy states of charge carriers in
the InAs layer. As already noted, we will consider such
interval of values of the InAs layer’s thickness, when the
energy of the Coulomb interaction between the electron
and the hole can no longer be neglected. For a radius
of 3D exciton in InAs, ≈ 35 nm, we will consider the
layer thickness in the range L = R2 − R1 =20–35 nm.
Here, R1, R2 are the inner and outer radii of the
layer, respectively. Therefore, the size-quantization
energy of carriers Econf(L, µ) ≈ ~2

2µL2 will vary within
the range (i) from Ecconf(L = 20 nm, µc) ≈ 4.1344 meV
to Ecconf(L = 35 nm, µc) ≈ 1.3501 meV for electrons
from the c-band (where Ecconf � ∆Uc = 520 meV),
and (ii) from Evconf(L = 20 nm, µh) ≈ 0.2319 meV to
Evconf(L = 35 nm, µh) ≈ 0.0757 meV for holes from
v-band (where Evconf � ∆Uv = 470 meV. Here, µc, µh
are the effective masses of electron and hole, respectively.

As one can see, for lower states the InAs layer in the
radial direction can be approximated with high accuracy
by the infinitely deep potential well. At the same time,
this means that for these states the carrier infiltration
from the InAs layer into the core and the outer InP shell
will be practically absent and in the lower energy states
the localization of carriers will only take place exactly in
the InAs layer.

The wave functions of single-particle states are repre-
sented in the standard form

Ψn,l,m (r, ϑ, ϕ) = Φn,l(r)Yl,m (ϑ, ϕ) , n = 1, 2, 3, . . . ,

l = 0, 1, 2, . . . , m = 0,±1,±2, · · · ± l. (1)
In the future, we will consider only states, when l = 0.
Taking into account the Coulomb interaction between the
electron and the hole in this case one can write for the
Schrödinger equation of the interacting electron–hole pair

− ~2

2µe
∆cΦ (rc, rv)−

~2

2µh
∆vΦ (rc, rv)

+U (rc, rv)Φ (rc, rv) = Ec,vΦ (rc, rv) . (2)
Here ∆c, ∆v are the radial parts of the Laplace operator,
Φ (rc, rv) and Ec,v are the envelope wave functions and
the energies of the pair, respectively.

TABLE I

Characteristics of InP and InAs bulk semiconductors.
Data is taken from [26–35]. Note: m0 is the free elec-
tron mass.

Material InP InAs
Band gap Eg [meV] 1344 354
Electron eff. mass µe/m0 0.08 0.023
Hole eff. mass µh/m0 0.6 0.41
Electron affinity Uc [meV] −4380 −4900

3D exciton radius aex [nm] 10–12 30–35
3D exciton bind. en. Eex [meV] 6 1.3–1.4

The function

U (rc, rv) = − e2

γ |rc − rv|
(3)

is the electrostatic interacting potential between
the electron and hole, e is the electron’s charge,
γ = (γInP + γInAs)/2, where γInP = 12.6 and γInAs = 15.2
are the static dielectric constants of InP and InAs,
respectively [25].

Note also that the following notations will be used in
all further calculations regarding to the charge carrier’s
states: |nc〉 are the final electron states in the conduc-
tion band, |nν〉 are the states of a hole in the valence
band, excluding electron–hole electrostatic interaction,
|ne〉 is the electron state, which constructs the electro-
static field (see (3)), |nν , ne〉 are the states of a hole mov-
ing in this field.

Since µe/µh = 1, the solutions in (2) can be found by
the help of the adiabatic approximation [36]. For this
purpose, we will present the energy Ec,v = Ec +Ev and
wave functions of the pair as follows:

Φ (rc, rv) = Φc (rc)Φv (rv)

Φi (ri) = χi (ri) /ri i = c, v. (4)
Now, (2) splits, into the “fast” — electron parts and
“slow” — hole parts, respectively

− ~2

2µeL2

d2χnc
(rc)

dr2c
= Ecconfχnc

(rc) ,

χnc
(rc = R1) = χnc

(rc = R2) = 0, (5)

− ~2

2µhL2

d2χnv,ne
(rv)

dr2v
+ Ūne

(rv)χnv,ne
(rv) =

Evnv,ne
χnv,ne

(rv) ,

χnv,ne (rv = R1) = χnv,ne (rv = R2) = 0. (6)
Here, Ūne

(rv) is the potential of electron–hole inter-
action averaged over the electronic states of (5) [37]
from (3):

Ūne (rv) = −e
2

γ

∫
|Φne (rc)|2

|rc − rv|
drc. (7)

Equation (5) is solved elementarily [36] and for the
envelope wave functions and energy we get
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Φnc
(rc) =

√
2

L

sin
(
πnc (rc −R1) /L

)
rc

,

Ecconf ≡ Ecnc
=
π2~2n2c
2µcL2

, nc = 1, 2, . . . . (8)

In the absence of electron–hole interaction, the en-
velope wave functions of holes will also have a similar
form [35, 36]. Analytical calculations and numerical esti-
mates show that with the considered geometrical dimen-
sions of the structure, the potential Ūne

(rv) from (7) can
be extrapolated by a straight line within the layer (see
Appendix A):

Ūne
(rv)→ Ũne

(ρv) = −ane
+ bne

ρv,

(
ρv =

rv
aex

)
.

(9)
Solving the corresponding Schrödinger equation (see Ap-
pendix B), we obtain the values of the energy of a hole
moving in the field of the averaged electron potential (9).
Table II shows the values of the hole energies Evnv

and
Evnv,ne

(nv, ne, nc = 1, 2) at the different values of the
InAs layer thickness without and with taking into ac-
count the average potential (A2), (A3).

As can be seen from Table II, the value of the dif-
ference Evnv=nc

− Evnv
increases with the increase of the

layer thickness. But, simultaneously with the increase of
the layer thickness, this growth slows down with a ten-
dency toward a certain limit. The first circumstance is
due to the fact that with the increase of the layer thick-
ness the role of size quantization decreases, but, at the
same time, the role of the electrostatic interaction be-
tween the electron and the hole increases. The second
circumstance is due to the fact that when the layer thick-
ness increases, and it becomes approximately equal to the
radius of the bulk exciton, potential (7) already less ac-
curately describes the state of the pair, and the electron–
hole interaction must now be taken into account within
a more accurate model, for example the Wannier–Mott
exciton model. When the layer thickness is less than the
Bohr radius of the exciton, size quantization is dominant,

TABLE II

The values of the hole energy Evnv
and Evnv,ne

,
(nv, ne = 1, 2) in the InAs layer without and with tak-
ing into account the electron–hole interaction for differ-
ent values of the layer thickness L (energy is measured
from zero level)

L [nm] 20 25 30 35
Ev1 [meV] 2.2867 1.4635 1.0163 0.7467
Ev2 [meV] 9.1468 5.8540 4.0653 2.9867
Ev1,1 [meV] 2.9702 2.1814 1.7493 1.5417
Ev2,1 [meV] 9.8134 6.5992 5.2418 3.7120
Ev1,2 [meV] 3.0406 2.3008 1.8739 1.5667
Ev2,2 [meV] 9.8665 6.6596 4.9173 3.8759
Ev1,1 − Ev1 0.6835 0.7179 0.7830 0.7950
Ev2,2 − Ev2 0.7197 0.8056 0.8520 0.8892

and the electrostatic interaction is taken into account as
a correction. When the layer thickness becomes of the
order of the Bohr radius of the exciton, the electrostatic
interaction becomes a dominant. As a result, the approx-
imation proposed in this work becomes already inaccu-
rate for such values of the layer thickness.

3. Discussion of results

As the illustration of the e–h electrostatic interaction
effect on the properties of the nanocomposite under con-
sideration, we discuss interband optical transitions and
luminescence in this structure.

3.1. Interband optical transitions

Let us consider the interband optical dipole transitions
between the states of valence |v〉 and conductive |c〉 bands
and examine the influence of potential (3) on these tran-
sitions. For the perturbation A, related to the light wave,
we will have in dipole approximation:

A =
|q|A0

m0c
(re · rp) . (10)

Here A0 is the amplitude of vector-potential, p is a 3D op-
erator of momentum, m0 is the free electron mass and c is
wave’s velocity in free space. For the matrix elementMc,v

of interband |nv, lv = 0,mv = 0〉 → |nc, lc = 0,mc = 0〉
transitions without considering electron–hole interaction,
one can write [2, 3]:

Mc,v = Ac,v
〈
Φnc (r) |Φnv(r)

〉
δnc,nv , (11)

where Ac,v is the matrix element of operator (10), built
on the Bloch amplitudes of v- and c-bands and envelope
radial functions Φn(r) are taken from (8). Non-diagonal
interband optical transitions (nc 6= nv) in the absence
of e–h interaction are prohibited. The threshold energy
~Ω (0)

c,v of the interband absorption in this case is deter-
mined by the size quantization energies of electron and
hole

~Ω (0)
nc,nv

= Eg + Enc + Env . (12)
Calculations using wave functions from (8) and (B.2)
show that the potential (3) removes the selection
rules (11). Accordingly, in the presence of e–h electro-
static interaction, along with diagonal transitions in the
considered structure, non-diagonal interband transitions
are also possible. The intensity of diagonal transitions
when taking into account the e–h interaction in relative
units is equal to one. The intensity of non-diagonal tran-
sitions turns out to be less than one. Here, obviously,
is a direct analogy with interband transitions in similar
nanostructures in the presence of a uniform electrostatic
field (see for example [3, 37]). This is due to the frame-
work of our approximation: indeed, the potential (A.2),
(A.3) is quasi-homogeneous in its behavior.

Table III shows the oscillator strengths
Kc,v ≡ Knc,nv,ne

(in relative units) for non-diagonal
interband transitions in the presence of e–h interaction
for different values of film thickness. As we have noticed,
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TABLE III

Values of oscillator strengths Kc,v ≡ Knc,nv,ne (in rela-
tive units) of non-diagonal interband transitions in the
InP/InAs/InP heterostructure in the presence of e–h in-
teraction for different values of the film thickness L.

L [nm] 20 25 30 35
|nv = 1, nc = 1〉 → |nc = 2〉
K2;1,1

0.0361 0.0597 0.0148 0.1214

|nv = 2, nc = 1〉 → |nc = 1〉
K1;2,1

0.0337 0.0601 0.0656 0.1114

|nv = 1, nc = 2〉 → |nc = 2〉
K2;1,2

0.0486 0.1013 0.0670 0.1579

|nv = 2, nc = 2〉 → |nc = 1〉
K1;2,2

0.0367 0.0651 0.0070 0.1383

TABLE IV

The values of the threshold energies of the interband ab-
sorption in the InP/InAs/InP heterocomposite without
taking into account

(
~Ω (0)

nc,nv

)
and taking into account

the e-h interaction
(
~Ωe−h

nc;nv,nc

)
for the different values

of the layer thickness L [nm].

L 20 25 30 35
~Ω (0)

1,1 [meV] 397.05 381.55 373.13 368.06
~Ω (0)

2,2 [meV] 526.20 464.21 430.53 410.23
~Ωe−h

1;1,1 [meV] 391.75 376.66 368.59 363.79
~Ωe−h

2;1,1 [meV] 514.03 454.93 423.12 403.73
~Ωe−h

1;1,2 [meV] 391.74 377.05 368.59 363.75
~Ωe−h

2;1,2 [meV] 514.03 455.31 422.94 403.68
~Ωe−h

2;2,1 [meV] 520.80 459.35 426.43 405.96
~Ωe−h

2;2,2 [meV] 520.86 459.31 425.96 405.99
~Ωe−h

1;2,2 [meV] 398.57 381.04 371.59 366.06
~Ωe−h

1;2,1 [meV] 398.51 381.08 372.08 366.03
~Ωe−h

1;1,1 − ~Ω (0)
1,1 5.3 4.9 4.54 4.27

~Ωe−h
2;2,2 − ~Ω (0)

2,2 5.34 4.9 4.57 4.24

the intensity of non-diagonal transitions on one-two
order is less than intensity of diagonal transitions.

Taking into account e–h interaction also leads to the
decrease of the interband absorption threshold energy
values. Using data from Tables I and II, and (A.1), and
expressions (8), (9), (12), the values of threshold ener-
gies are calculated without taking into account (~Ω (0)

nc,nv )
and taking into account (~Ωe−h

nc,nv,nc
) the e–h interaction.

The corresponding values of these frequencies are given
in Table IV.

Table IV clearly shows that taking into account the e–h
interaction leads to a decrease of the threshold energies
compared with the approximation without considering
the interaction. At the same time, it should be noted
that the following transitions:
(|nν = 1, ne = 1〉 → |nc = 1〉 , |nν = 1, ne = 2〉 → |nc = 1〉) ,

(|nν = 2, ne = 1〉 → |nc = 2〉 , |nν = 2, ne = 2〉 → |nc = 2〉) ,

(|nν = 2, ne = 1〉 → |nc = 1〉 , |nν = 2, ne = 2〉 → |nc = 1〉)

in pairs have the same threshold energy. This is explained
by the fact that the averaged electrostatic field (7) cre-
ated by an electron is determined only by the localization
region of the electron, but not by its velocity. Mathemat-
ically this is manifested by the fact that the average value
of the electron probability density |χnc

(rc)|2 throughout
the entire interval rc ∈ [R1, R2] has the same value, re-
gardless of the state number. In addition, the difference
between the threshold energies of the diagonal transitions
without and with taking into account the e–h interaction
has the same value: ~Ωe−h

1,1,1 − ~Ω (0)
1,1 = ~Ωe−h

2,2,2 − ~Ω (0)
2,2 .

This is also a consequence of the factor that the field con-
tribution of the electronic states |ne = 1〉 and |ne = 2〉 to
the energy of motion of a hole has the same value for
different values of quantum number ne.

Now let us consider the interband optical absorption
in the real ensemble of core/shell/shell nanostructures
with the dispersion of their sizes in the strong size quan-
tization regime. Note that this dispersion will lead to
broadenings of spectral lines. According to [37] we will
have the following expression for light absorption coeffi-
cient for the strong quantization regime:

α (ω) = α0

∑
νe,νh

J2δ
(
~ωe,h − ELg − Ee − Eh

)
, (13)

where Eg is the band gap of the semiconductor, α0 is
a quantity proportional to the square of the dipole mo-
ment’s matrix element taken over the Bloch functions.
The broadenings of spectral lines will be taken into con-
sideration replacing the delta function in (1) by the
Lorentz contour

δ
(
~ωe,h − ELg − Ee − Eh

)
−→

Γ(
~ωe,h − ELg − Ee − Eh

)2
+ Γ 2

, (14)

where Γ is the width of Lorentzian parameter. For cal-
culations we take Γ = 5 meV, according to [38].

The next step of the investigation of the InP/InSb/InP
core/shell/shell structure’s optical properties is the cal-
culation of the photoluminescence (PL) spectra. The PL
spectra can be calculated using the Roosbroeck–Shockley
relation [39, 40]:

R (~ω) = R0~ωα (~ω)
fc (1− fv)
fv − fc

, (15)

where R0 is proportional to the square of the matrix el-
ement of the dipole moment taken over the Bloch func-
tions, fc and 1 − fv are probabilities of the conduction
band states being occupied and the valence band states
being empty, respectively. For the high temperatures the
term fc(1−fv)

fv−fc in the Roosbroeck–Shockley relation trans-
forms into the Boltzmann-like form.

Note that the PL curves have been calculated for the
room temperature. The separate peaks corresponding to
the transitions described in the absorption part can be
seen in the PL spectra. As we mentioned above, for the
high temperatures the term fc(1−fv)

fv−fc in the Roosbroeck–
Shockley relation transforms into the Boltzmann-like
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Fig. 1. The dependence of the absorption coefficient
(a) and photoluminescence spectra (b) on the in-
cident light frequency for the diagonal transitions
|nν = 1, ne = 1〉 → |nc = 1〉.

form and this term vanishes the peaks in the high-energy
region. That is why the low energy peaks can be ob-
served more clearly in the PL spectra than the high-
energy peaks [41, 42]. It is also obvious that the peaks
corresponding to the diagonal transitions have higher in-
tensity than the peaks corresponding to the non-diagonal
transitions.

The dependences of the absorption coefficient for the
diagonal transitions |nν = 1, ne = 1〉 → |nc = 1〉 are pre-
sented in Fig. 1. As we can see from Fig. 1, with the
increase of thickness L the peak positions have red shift.
In the same time the small increase of the peak intensi-
ties has been considered with the decrease of thickness
of layer. For the fixed value of the thickness taking into
account the e–h interaction leads to the red shift of peak
positions. The same behavior for diagonal transitions
|nν = 1, ne = 1〉 → |nc = 1〉 can be seen also for the PL
spectra, which is presented in Fig. 1b. With the increase
of thickness L the intensities of PL spectra increase.

As we noted above, accounting of e–h interaction the
non-diagonal transitions are possible in the system. The
dependences of the absorption coefficient for the non-
diagonal transitions |nν = 2, ne = 1〉 → |nc = 1〉 are pre-
sented in Fig. 2. With the increase of thickness L the
peak positions for both absorption and PL spectra have
red shift. The values of intensities for non-diagonal tran-
sitions, which are one-two order less than intensities of
diagonal transitions, are presented in Table III.

Fig. 2. As in Fig. 1, but for the non-diagonal
transitions.

4. Conclusions

For the considered geometric dimensions of the system
consideration of the electrostatic electron–hole interac-
tion is physically necessary. The presence of electrostatic
e–h interaction increases the absolute value of the hole
energy in the quantum well. Hence, the total energy of
the pair also increases. Under the influence of the elec-
trostatic potential of the electron, the hole is pressed to
the region of the inner radius of the layer. Electrostatic
e–h interaction removes the selection rules for the radial
number for interband optical transitions. The electro-
static e–h interaction leads to the shift of the threshold
energy of interband transitions. The magnitude of the
e–h interaction potential can be adjusted by varying the
thickness of the quantizing layer of the core/shell/shell
structure, which can be used to control the band fre-
quencies of the absorbed radiation.

Appendix A: The calculation
of the potential Ūnc

(rv) from (7).

To calculate the integral, we proceed to the triangular
coordinates, where
|rc − rv| =

√
r2c + r2v − 2rcrv cos(α). (A.1)

Here, α is the angle between vectors rc and rv. Substi-
tuting (A.1) into (7) and breaking the entire integration
interval by the radial variable rc ∈ [R1, R2] into two inter-
vals rc ∈ [R1, rv] and rc ∈ [rv, R2] we obtain the following
expression for the potential:
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Ūne
(rv) = − 2

L

e2

γ


(

1− R1

rv

)
+ ln

(
R2

rv

)
− L

2πnerv
sin
(

2πne(rv−R1)
L

)
− cos

(
2πneR1

L

) [
cos int

(
2πneR2

L

)
− cos int

(
2πnerv
L

)]
− sin

(
2πneR1

L

) [
sin int

(
2πneR2

L

)
− sin int

(
2πnerv
L

)]
 (A.2)

Fig. A1. Plots of functions Ūne=1 (rv) in dimensionless
units at a fixed value of R1 = 25 nm and R2 = 45, 50,
55, 60 nm.

TABLE A1

Values of parameters ane (L) and bne (L) when thickness
of the layer L = 20, 25, 30, 35 nm (ne = 1, 2).

L 20 25 30 35
a1(L) −5.7111 −5.2391 −4.8443 −4.5086

b1(L) 1.7893 1.5187 1.3069 1.1379
a2(L) −5.8386 −5.3851 −5.0056 −4.6824

b2(L) 1.8884 1.6209 1.4096 1.2392

For convenience, in all further intermediate calcula-
tions, the value of aex = 35 nm is used as the unit of
length, and the value of Eet = ~2/2µca2ex = 1.3501 meV
is used as the unit of energy. Analysis of the function
Ūne (rv) behavior from (A.2) shows that in the range of
values of a variable rv ∈ [R1, R2], this function increases
monotonically, taking its smallest and largest values at
the points rv = R1 and rv = R2, respectively.

Figure A1 shows the graphs of the function Ūne
(rv)

in reduced units in the range of values rv ∈ [R1, R2] at
R1 = 25 nm when R2 = 45, 50, 55, 60 nm.

It is not difficult to conclude from this figure that the
extrapolation of graphs of functions Ūnc

(rv) in the in-
terval rv ∈ [R1, R2] by the corresponding straight line.
Indeed, such extrapolation practically does not change
the physical essence of the influence of the quantum well
bottom profile on the formation of the energy spectrum
of holes. The largest deviation between the values of the
functions from (A.2) and the straight line

Ũne
(ρv) = −ane

(L) + bne
(L) ρv, ρv =

rv
aex

(A.3)

is less than 7%. The values of the parameters anc (L) and
bnc (L) depend on the layer thickness and are determined

numerically. Table A1 shows the values of the parame-
ters ane

(L) and bn2
(L) for various values of the layer

thickness L.

Appendix B: The states of a hole in an InAs
layer in the presence of potential (A.2) and (A.3)

In this case, the Schrödinger radial Eq. (6) with poten-
tial (A.2) and (A.3) in the effective mass approximation
is reduced to the following equation:

χ (ξ)− ξχ (ξ) = 0 ξ =

(
rv −

E

F

)(
2µhF

~2

)1/3

,

χ (ξ1) = χ (ξ2) = 0 ξ1,2 =

(
R1,2 −

E

F

)(
2µhF

~2

)1/3

,

F =
b, Eet

aex
. (B.1)

Here, E = Evnv,ne
+ aneEet, and Evnv,ne

is the required
energy of a hole moving in the field of the electron po-
tential (A.2) and (A.3). The solutions of (B.1) are given
by the following linear combination:

χ (ξ) = C1Ai (ξ) + C2Bi (ξ) . (B.2)
Here Ai (ξ) ,Bi (ξ) are the Airy functions of the first and
second kind, respectively, and C1,2 are the normalizing
constants. Figure B1 shows the hole probability density
distribution with and without taking into account e–h
interaction. As we can see from the figure, if e–h inter-
action is taken into account, then the probability density
distribution peak for hole shifts to the inner radius of the
core/shell/shell structure.

Fig. B1. The hole probability density distribution
with and without taking into account e–h interaction
at L = 35 nm.
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Using (A.1), (B.1) and (B.2) one can write the follow-
ing equation for the definition of hole energy spectrum:

Ai

[(
µh

µe

)1/3 (
ρ1b

1/3
ne − εnv,ne

b
−2/3
ne

)]
Ai

[(
µh

µe

)1/3 (
ρ2b

1/3
ne − εnv,ne

b
−2/3
ne

)] =

Bi

[(
µh

µe

)1/3 (
ρ1b

1/3
ne − εnv,ne

b
−2/3
ne

)]
Bi

[(
µh

µe

)1/3 (
ρ2b

1/3
ne − εnv,ne

b
−2/3
ne

)]
ρ1,2 =

R1,2

aex
, εnv,ne =

Evnv,ne

Eet
+ |ane | . (B.3)
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