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Using a finite element method to numerically solve the time-dependent Ginzburg–Landau equations, we stud-

ied the dynamic properties of the mesoscopic superconducting strips. We obtain the different voltage–current,
free energy–time, and vortex evolution patterns for different temperatures conditions and applied current. Our
results show that the temperature and the applied current directly influence the dynamics of the superconducting
condensate and lead to the variations of threshold current and the periodic oscillations of the free energy across
the strips with a frequency.
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1. Introduction

In the last decade superconductivity at decreased
structure dimensions has received an increasing inter-
est mainly due to the huge advancements in modern
nanofabrication techniques. Mesoscopic superconduc-
tors constitute a class of materials where size effects can
play a relevant role to determine the vortex arrangement
throughout the superconducting film [1–12]. When their
thickness is much smaller than the coherence length ξ
and the penetration depth λ, the external magnetic field
in terms of vortices can penetrate into a superconduct-
ing film, and vortex interactions with other vortices and
with the screening currents circulating around the edges
give rise to a variety of configurations, such as the giant
vortex state [7, 8], multivortex state [9, 10], and vortex-
antivortex state [11, 12]. Meanwhile, the magnetic flux
vortex configurations are strongly influenced by both the
geometry and size of the sample [13]. The physics be-
comes even richer when an electric field is applied to
these samples in addition to a magnetic field, resulting
in the phase-slip phenomenon and oscillatory phenom-
ena [2, 14]. For example, a superconducting strip with a
perpendicular magnetized dots on top in the presence of
an applied dc current exhibits the periodic oscillations of
the voltage due to the phase-slip phenomenon [2]. The
mesoscopic superconducting weak links indicate possible
magnetoresistance oscillations and reentrance of super-
conductivity due to the current driven transition from
the Abrikosov–Josephson to Josephson-like vortex [14].
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Oscillatory phenomena, which are an important part of
the electronic scene, are readily found in nonequilibrium
superconductivity. However, mesoscopic superconduct-
ing film may also exhibit oscillation features, such as free
energy and amplitude of the voltage oscillation. In this
paper, we study the dynamic properties of the mesoscopic
superconducting strips under the influences of tempera-
ture, applied current, and applied magnetic fields, and
investigate the possible oscillation phenomenon. Numer-
ical simulations are performed inside the framework of
the time-dependent Ginzburg–Landau (TDGL) model.
Also, by using finite-element method (FEM) [15, 16], the
TDGL equations are numerically solved to obtain the
dynamic properties of the superconducting strips.

The work is organized as follows. In Sect. 2, we
show the derived TDGL equations and explain the nu-
merical method and procedure used in the calculations.
In Sect. 3, we analyze the results obtained for the su-
perconducting strips. Our results are finally summarized
in Sect. 4.

2. Theoretical formalism

We consider a mesoscopic superconducting stripe and
the superconducting state is usually described by the
complex order parameter ψ. The quantity |ψ|2 represents
the electronic density of the Cooper pairs. In the regions
where |ψ|2 is small, superconductivity is suppressed. At
the center of the vortex |ψ|2 = 0, whereas the local mag-
netic field B is maximum. We restrict ourselves to a
sufficiently thin strip such that the thickness d � ξ, λ
(ξ is the coherence length, λ is the penetration depth).
The strip is surrounded by vacuum with an applied mag-
netic field H = (0, 0, H) in the z-direction and the trans-
port current I = (0, I, 0) in the y-direction. The order
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parameter and the local magnetic field can be determined
by the Ginzburg–Landau (GL) equations in their time-
dependent formalism, expressed by [17]:(

∂

∂t
+ iΦ

)
ψ = (∇− iA)2ψ + (1− T − |ψ|2)ψ, (1)

σ

(
∂A

∂t
+∇Φ

)
=

Re [ψ∗ (− i∇−A)ψ]− κ2∇×∇×A, (2)
where Φ is the scalar potential, ψ is the complex or-
der parameter, A is vector potential, κ is GL parame-
ter, and σ is the conductivity constant. The first equa-
tion governs the relaxation of the superconducting order
parameter ψ, and the second equation is the Maxwell
equation for the induced magnetic field B = ∇ × A.
All physical quantities are measured in dimensionless
units. The distances are scaled with the coherence length
ξ(0). A is given in units of Φ0/2πξ(0) (Φ0 = ch/2e
is the flux quantum). The magnetic field is in units of
Hc2 = Φ0/2πξ(0)

2 =
√
2κHc, where Hc is the thermo-

dynamic critical field and κ = λ/ξ is the GL parameter.
The time is in units of GL relaxation time t0 = π}/8kBTc.
Temperature T is in units of Tc (critical temperature).
Order parameter ψ is scaled to its value at zero magnetic
field. The free energy of the superconducting state, mea-
sured in F0 = H2

cV/8π units, is expressed as

F =
2

V

∫ [
− |ψ|2 + 1

2
|ψ|4 + |(∇− iA)ψ|2

+κ2 (∇×A−H)
2

]
dV. (3)

To account for heating effects, we couple Eq. (1) and
Eq. (2) to the heat transfer equation

ν
∂T

∂t
= ζ∇2T +

(
∂A

∂t

)2

− η(T − T0), (4)

where T0 is the bath temperature. Here we use ν = 0.03,
ζ = 0.06, and η = 2×10−4, corresponding to an interme-
diate heat removal to the substrate [18]. The transport
current is introduced via the boundary condition for the
vector potential ∇×A|z (x = 0, w) = H ±HI . The ex-
ternal dc current I is induced by imposed HI on the
lateral edges of the sample. From the vector potential
it is possible to obtain the voltage by using the relation
V = ∂

∂t

∫
Adl. The applied current is given in units of

j0 = σn}/2et0ξ(0) (σn is the normal-state conductivity),
and the voltage scale is given by V0 = }/2et0.

For the magnetic field, the boundary condition reads:
(∇×A) |boundary = H. For the order parameter, we use
the superconductor-insulator boundary conditions, i.e.,
we set the normal component of the supercurrent across
the boundary to zero: n ·(∇− iA)ψ|boundary = 0, where
n is the outward normal unit to the surface. Finally, to
simulate a infinite length strip, we apply periodic bound-
ary conditions in the y-direction: ψ(x, y) = ψ(x, y + Ly)
and A(x, y) = A(x, y + Ly), where Ly is the length
of the simulated rectangular unit cell (with width Lx).

The TDGL equations and their discrete forms are gauge
invariant under the transformations as follows: ψ′ =
ψ e iχ, A′ = A + ∇χ, Φ′ = Φ − ∂χ/∂t. We chose the
zero-scalar potential gauge, that is, Φ = 0 at all times
and positions.

3. Results and discussions

We first consider the mesoscopic superconducting strip
with sizes of Lx = 5ξ and Ly = 11ξ. Our simulations
have been carried out by using σ = 1 and κ = 1.2 for the
superconducting strip. The initial conditions are |ψ|2 = 1
corresponding to the Meissner state and zero magnetic
field inside the superconductor. Figure 1 shows the time-
averaged voltage as a function of the applied current
(V (I)) in the superconducting strip at H/Hc2 = 0.2,
T/Tc = 0.85. It is known that the superconducting strip
goes through two levels of increasing resistance as driv-
ing current is increased. Low resistance of the super-
conducting strip is maintained up to a threshold current
when maximal current in the strip reaches the de-pairing
current. The threshold current is Ic/I0 = 0.006. With
further increase in applied current, superconductivity be-
comes utterly suppressed in the strip, leading to a normal
state of higher resistance.

Figure 2 shows free energy as a function of the time
(F (t)) at H/Hc2 = 0.2, T/Tc = 0.85, and I/I0 = 0.005,
which indicates the period τ/t0 ≈ 1400 of the free-energy
oscillation. The inset shows the contour plots of the
Cooper-pair density at the corresponding time. Under
the drive of the applied current, vortices move along the
y-axis.

Figure 3 shows the time-averaged voltage as a func-
tion of the applied current in the superconducting strip
at H/Hc2 = 0.6 for the T/Tc = 0.5, 0.3, and 0.1, respec-
tively. We observed that the corresponding threshold

Fig. 1. The time-averaged voltage as a function of the
applied current in the superconducting strip with di-
mensions Lx = 5ξ and Ly = 11ξ at H/Hc2 = 0.2,
T/Tc = 0.85.
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Fig. 2. Free energy vs. time characteristics of the strip
at H/Hc2 = 0.2, T/Tc = 0.85 and I/I0 = 0.005. The
inset shows the contour plots of the Cooper-pair den-
sity at the corresponding time. Blue to red means that
the absolute value of the order parameter ranges from
minimum to maximum.

Fig. 3. (a)–(c) The time-averaged voltage as a function
of the applied current in the superconducting strip with
dimensions Lx = 5ξ and Ly = 11ξ at H/Hc2 = 0.6 for
the T/Tc = 0.5, 0.3, and0.1, respectively.

Fig. 4. Voltage vs. time characteristics of the strip at
H/Hc = 0.6, I/I0 = 0.06 and T/Tc = 0.1.

currents were Ic/I0 = 0.01, 0.05 and 0.1, respectively.
With decrease in temperature T , the threshold current
increases. Figure 4 shows voltage vs. time characteris-
tics V (t) of the strip at H/Hc = 0.6, I/I0 = 0.06, and
T/Tc = 0.1, which indicates the period τ/t0 ≈ 680 of the
voltage oscillation.

For the chosen length of simulation region and the con-
sidered magnetic field, we actually had Nv = 2 vortices
moving in a single row, as shown in the contour plots of
the Cooper-pair density in Fig. 5. There, points 1–8 are
used to denote one period of the vortex dynamics, mak-
ing the characteristic instance. The V (t) characteristic

Fig. 5. Contour plots of the Cooper-pair density at
time intervals indicated in Fig. 3b. Blue to red means
that the absolute value of the order parameter ranges
from minimum to maximum.

Fig. 6. The time-averaged voltage as a function of the
applied current in the superconducting strip with di-
mensions Lx = 10ξ and Ly = 21ξ at H/Hc2 = 0.3 and
T/Tc = 0.5.

shows periodic oscillations with a minima corresponding
to the entry of a vortex row inside the strip (see the
cycle-*1). At a later time the new vortex would enter
into the strip from the down boundary (cycle-*2) and
pushes the previous one out of the strip, which leads to
a maximum in the voltage. Subsequently, the new vor-
tex interacts with the previous vortex (cycle-*3, *4, *5,
*6, *7, *8). Ultimately, the superconducting condensate
relaxes towards its minimum.

Up to now we studied the dynamic properties of the
superconducting strip with dimensions Lx = 5ξ and
Ly = 11ξ. In what follows, we consider a superconducting
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Fig. 7. Free-energy vs. time characteristics in the
superconducting strip with dimensions Lx = 10ξ
and Ly = 21ξ at H/Hc2 = 0.3, T/Tc = 0.5 for the
I/I0 = 0.01, 0.02 ,. . . , 0.07 (interval of 0.01).

Fig. 8. Contour plots of the Cooper-pair density at the
I/I0 = 0.01, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 (time-
steps: 5000). Blue to red means that the absolute value
of the order parameter ranges from minimum to maxi-
mum.

strip with dimensions Lx = 10ξ and Ly = 21ξ.
Figure 6 shows the time-averaged voltage as a function
of the applied current in the superconducting strip at
H/Hc2 = 0.3 and T/Tc = 0.5. We observed that the
threshold current was Ic/I0 =0.09.

Figure 7 shows free-energy vs. time characteris-
tics in the superconducting strip at H/Hc2 = 0.3 and
T/Tc = 0.5 for the I/I0 = 0.01, 0.02, . . . , 0.07 (inter-
val of 0.01). When I/I0 < 0.05, the free energy curves
exhibit a similar oscillation behavior, which indicates the
similar vortex motion (see Fig. 8). When I/I0 ≥ 0.05, we
observed the multi-harmonic free-energy oscillation phe-
nomenon and the asymmetric distribution of the vortices
(see Fig. 8). Maybe we can understand this phenomenon
in the following way. The vortex entering into the strip
breaks the symmetry of the flow of the current in the

strip, and breaks the symmetry of the positions of the
vortices, which leads to the multi-harmonic oscillation
of free energy shown in Fig. 7. That suggests that the
corresponding free-energy oscillates out of phase with its
own frequency tunable both by the applied current and
by the temperature.

4. Conclusions

In conclusion, using the TDGL theory we studied the
dynamic properties of the mesoscopic superconducting
strips at different temperatures. Through our research,
the dynamic properties of two different sizes of super-
conducting strips were obtained. On the one hand, we
obtained the corresponding threshold currents for the
superconducting strip with dimensions Lx = 5ξ and
Ly = 11ξ. On the other hand, the multi-harmonic oscil-
lation of free energy was found for the superconducting
strip with dimensions Lx = 10ξ and Ly = 21ξ. The free
energy oscillates out of phase with its own frequency,
which is attributed to the influences of both the tem-
perature and the applied current on the vortices in the
superconducting strip.
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